

http://synergy.ece.gatech.edu

Exercise 3: **Comparing Systems**

William Won

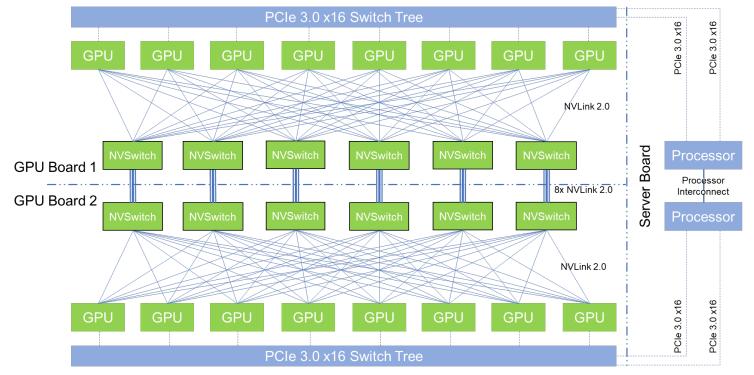
Ph.D. Student, School of Computer Science Georgia Institute of Technology william.won@gatech.edu

Acknowledgments: Srinivas Sridharan (Facebook), Sudarshan Srinivasan (Intel)

Time (PDT)	Торіс	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 - 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 - 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 - 4:00	Coffee Break	
4:00 - 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/mlsys-2022</u>

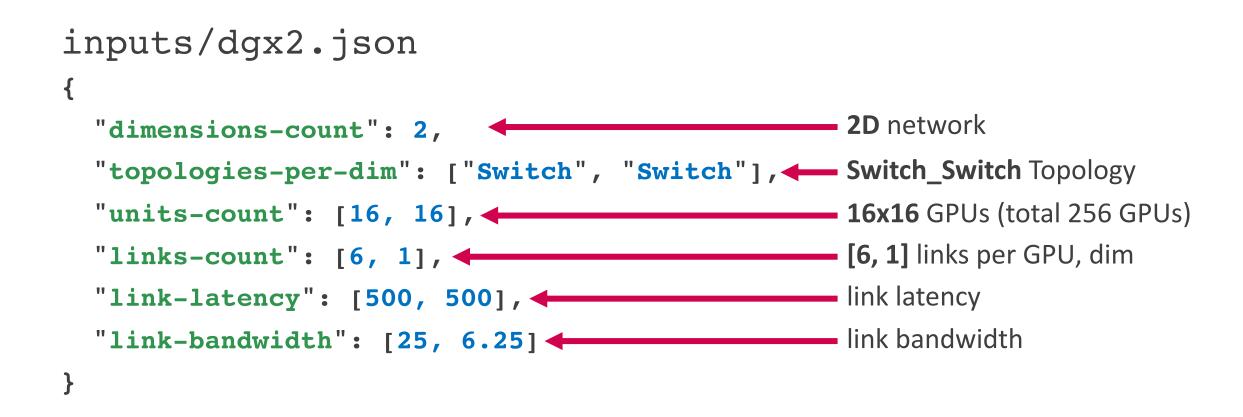

Attention: Tutorial is being recorded

Objective

- Representing real systems using ASTRA-sim
 - NVIDIA DGX-2 Pods
 - Google Cloud TPU
- Running real DL workload benchmarks
 - Vision model (VGG-16)
 - Language model (GPT-3)
- Comparing ASTRA-sim results

NVIDIA DGX-2 Architecture

- 16 V100 GPUs
- Connected Using NVSwitch / NVLink
- 100 GbE InfiniBand Scale-out per 2 GPUs (i.e., effectively 50 GbE per GPU)

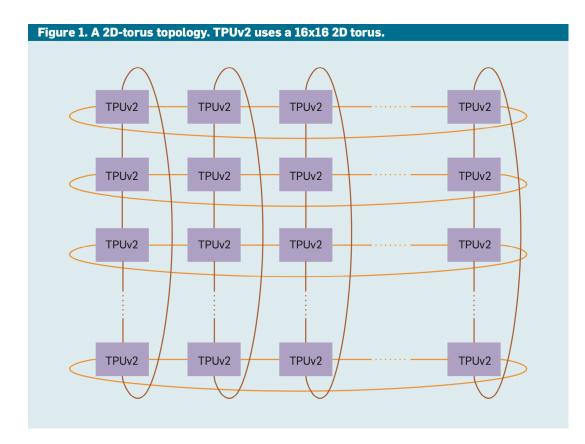


- NVSwitch:
 - 25 GB/s per NVLink
 - 6 NVLinks per GPU
- InfiniBand Switch:
 6.25 GB/s

https://docs.it4i.cz/dgx2/introduction/

Representing DGX-2

• 16 DGX-2 connected (total 256 GPUs)

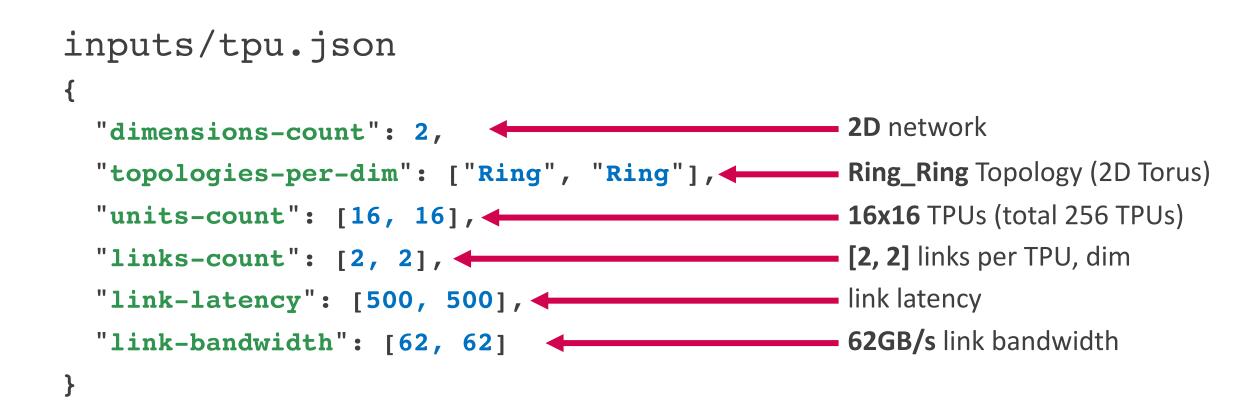


Representing DGX-2

• 16 DGX-2 connected (total 256 GPUs)

```
inputs/dgx2.txt
```

Google Cloud TPU Architecture



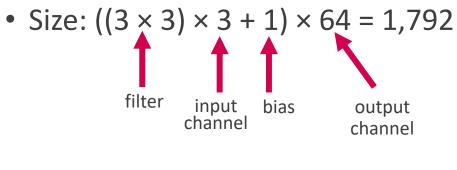
- 16×16 TPUv2 (Total 256 TPUs)
- 2D Torus Topology
- Inter-core Interconnect (ICI)
 - 496 Gbps (= 62 GB/s)

N. Jouppi *et al.*, "A Domain-Specific Supercomputer for Training Deep Neural Networks," Communications of the ACM, 63, 7, 67-78.

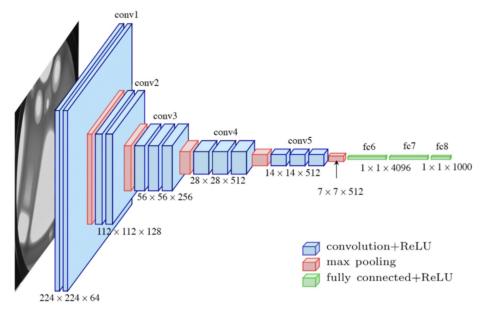
Representing Cloud TPU

• 16×16 TPUv2 (Total 256 TPUs)

Representing Cloud TPU


• 16×16 TPUv2 (Total 256 TPUs)

inputs/tpu.txt

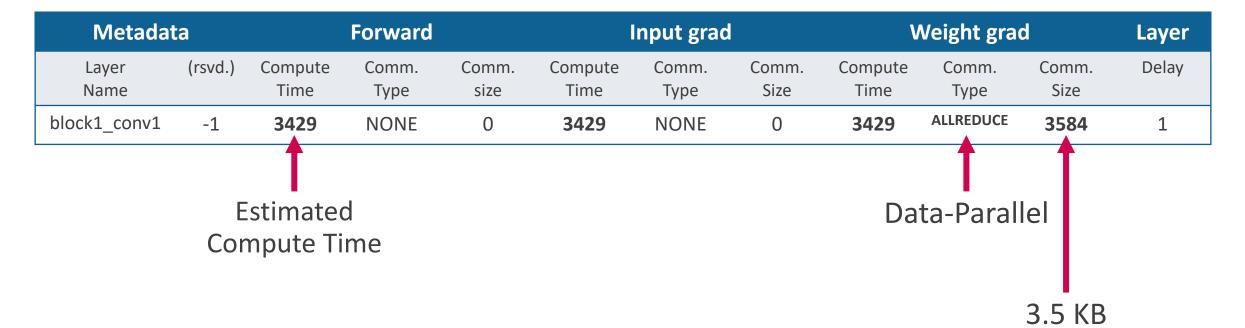

Meta	data	Forward		Input grad		Weight grad			Layer		
Layer Name	(rsvd.)	Compute Time	Comm. Type	Comm. size	Compute Time	Comm. Type	Comm. Size	Compute Time	Comm. Type	Comm. Size	Delay
allreduce	-1	1	NONE	0	1	NONE	0	1	ALLREDUCE	1048576	1

- Compute Time
- Communication Type
- Communication Size

- VGG-16 first layer: (50,176 × 27) × (27 × 64)
 - Total 173,408,256 operations
 - TPUv2: 46 TFLOPS (46 × 2⁴⁰ op/s)
 - 3429 ns
- Can leverage Workload Generator or other performance estimations
- Communication: Filter

• 1,792 × 2B = 3,584 (=**3.5 KB**)

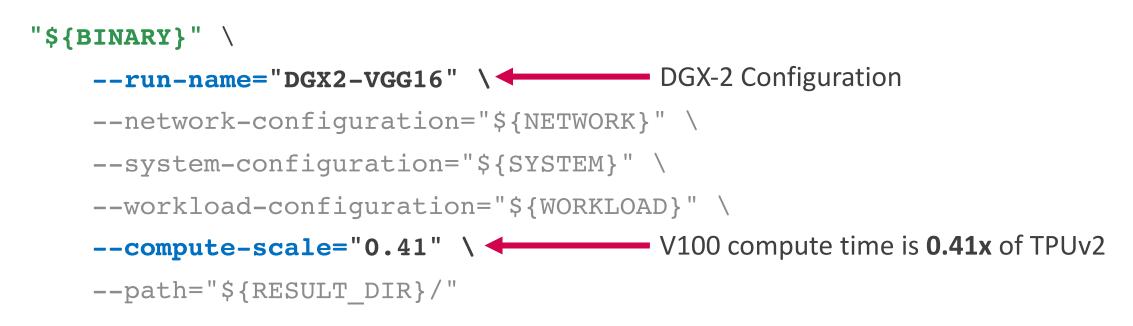
https://medium.com/mlearning-ai/an-overview-of-vgg16-and-nin-models-96e4bf398484


inputs/vgg16.txt

Data Parallel DATA 16

#layers

block1 conv1 -1 3429 NONE 0 3429 NONE 0 3429 ALLREDUCE 3584 1



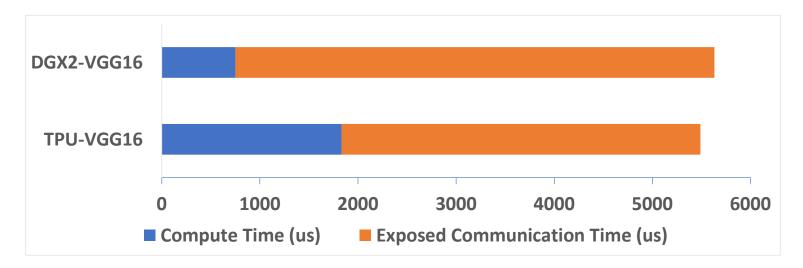
	V100	TPUv2
Peak Tensor Performance (TFLOPS)	112	46

- V100 is **2.43x** faster than TPUv2
- *i.e.*, V100 compute time is **0.41x** of TPUv2

Running Experiment

- Objective:
 - Run VGG-16
 - On DGX-2 Pod and Cloud TPU
- V100 compute time is 0.41x of TPUv2

Running Experiment


- Objective:
 - Run **VGG-16**
 - On DGX-2 Pod and Cloud TPU

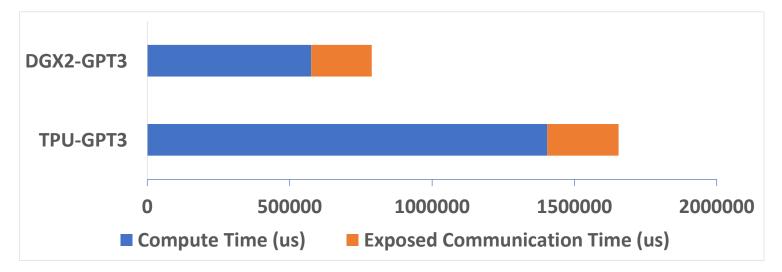
```
$ cd exercise_3/
$ ./build.sh
$ ./exercise_3_1.sh
```

Understanding Results

result_1/tutorial_result.csv

Name	Total Time (us)	Compute Time (us)	Exposed Communication Time (us)	Total Message Size (MB)
DGX2-VGG16	5632.316	751.019	4881.297	525.729748
TPU-VGG16	5489.225	1831.809	3657.416	525.730019

Running Experiment


- Objective:
 - Run GPT-3 (First 3 Transformer layers)
 - On DGX-2 Pod and Cloud TPU

\$./build.sh
\$./exercise_3_2.sh

Understanding Results

result_2/tutorial_result.csv

Name	Total Time (us)	Compute Time (us)	Communication Lime	
DGX2-GPT3	787767.34	575821.446	211945.894	32943.252
TPU-GPT3	1655238.43	1404442.610	250795.814	32943.252

Time (PDT)	Торіс	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 - 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 - 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 - 4:00	Coffee Break	
4:00 - 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/mlsys-2022</u>

Attention: Tutorial is being recorded