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Overview
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• It is a complex problem and can be viewed as
three layers :
• 1. Workload layer (the training loop):

• Parallelism approach
• Compute power
• Communication size & type and 
dependency order

• 2. System layer:
• Collective communication algorithm
• Chunk size, schedule of collectives

• 3. Network layer:
• Physical topology
• Congestion control, communication protocol
• Link BW, latency, buffers, routing algorithm

Many tools
In this area
(e.g., Garnet, 
Analytical)

Not too many 
tools cover 
these aspects

Workload Parallel ization Strategy

Compute 
Design 

Framework-level Scheduling

Communication Mechanism

Messaging/ Transpor t Layer

Endpoint Design and Connectivi ty

Hierarchical Fabr ic Design and Topology

Communication Scheduling

Communication Policy and Pattern

Network Implementation

DNN Models

Memory 
Design 

Workload 
Layer

System 
Layer

Network
Layer

How to Model and Evaluate the Communication Effect
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• Workload layer:
• Supports Data-Parallel, Model-Parallel, 

Hybrid-Parallel training loops
• Easy to add new arbitrary training loop

• System:
• Ring based, Tree-based, AlltoAll based, and 

multi-phase collectives
• Easy to add new collective communication

• Network:
• Supports Analytical and GARNET Network 

simulator
• Analytical: 

• Supports hierarchical topologies
• Each level in hierarchy can be switch, ring, FC….
• https://github.com/astra-

sim/analytical/tree/develop
• GARNET: 

• Supports switch-based  and torus-based 
topologies

• Supports credit-based flow control
• https://github.com/georgia-tech-synergy-

lab/gem5_astra/tree/reorgV2
• Can add new topologies in both Analytical 

and GARNET

ASTRA-SIM Architecture
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https://github.com/astra-sim/analytical/tree/develop
https://github.com/georgia-tech-synergy-lab/gem5_astra/tree/reorgV2


ASTRA-SIM Runtime Structure
• Each NPU is represented through separate instance of Workload, System, and Network API.

• Network API class is implemented by the network backend.

System 
instance 0

Workload
instance 0

Network API 
instance 0

NPU 0

System 
instance 1

Workload
instance 1

Network API 
instance 1

NPU 1

Network 
Fabric

System 
instance N

Workload
instance N

Network API 
instance N

NPU N
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ASTRA-SIM Directory
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Workload Layer
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Workload Layer
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• Currently, ASTRA-SIM supports 2 types of front-ends:
• Text-based workload parser
• New: Execution graph (EG) based workload parser

• Please refer to the codebase for more info 

We cover text-based front-end in this tutorial



Workload Layer Training Loop
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• Code Structure

astra-sim

workload system network
frontend

Workload.cc

Implements different training loops



Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad 
states

init

Wait for 
ig comp

Wait for 
wg comp

Wait for 
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished / 
issue_layer_fwd_pass_compute()

finished & !last_layer / 
go_to_next_layer()

Finished & last_layer / 
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()



Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad 
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
compute

Inference
compute

init

Wait for 
ig comp

Wait for 
wg comp

Wait for 
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished / 
issue_layer_fwd_pass_compute()

finished & !last_layer / 
go_to_next_layer()

Finished & last_layer / 
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2
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• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad 
states
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Input gradient 
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Non-Blocking 
Communicate

Weight gradient 
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Inference
compute
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Wait for 
wg comp

Wait for 
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()
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issue_layer_fwd_pass_compute()
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go_to_next_layer()

Finished & last_layer / 
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()
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go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2
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• Different training loops can be captured using state machines.
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Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.
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• Different training loops can be captured using state machines.
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• Different training loops can be captured using state machines.
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• Different training loops can be captured using state machines.
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• Different training loops can be captured using state machines.
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Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad 
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Input gradient 
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Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.

init

Wait for 
ig comp

Wait for 
wg comp

Wait for 
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished / 
issue_layer_fwd_pass_compute()

finished & !last_layer / 
go_to_next_layer()

Finished & last_layer / 
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),
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go_to_previous_layer(),
Issue_wg_compute()fwd-pass states
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weight-grad 
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Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
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Layer 0 Layer 1 …….. Layer N-1Layer N-2
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Issue_wg_comm(),
Issue_ig_grad_compute()

NPU1

NPU2



Text-Based Workload Training Loop: Data-Parallel Example

22MLSys 2022 tutorial  Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

init

Wait for 
ig comp

Wait for 
wg comp

Wait for 
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished / 
issue_layer_fwd_pass_compute()

finished & !last_layer / 
go_to_next_layer()

Finished & last_layer / 
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),
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weight-grad 
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Input gradient 
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Non-Blocking 
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Issue_wg_comm(),
Issue_ig_grad_compute()

NPU1

NPU2



Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.

init

Wait for 
ig comp

Wait for 
wg comp

Wait for 
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished / 
issue_layer_fwd_pass_compute()

finished & !last_layer / 
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Issue_wg_comm(),
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weight-grad 
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Input gradient 
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Non-Blocking 
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Weight gradient 
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Inference
compute

NPU1

NPU2

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()



Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.

init

Wait for 
ig comp

Wait for 
wg comp

Wait for 
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Wait for
fwd
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Non-Blocking 
Communicate

Weight gradient 
compute

Inference
compute

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
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Text-Based Workload Training Loop: Data-Parallel Example
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• Different training loops can be captured using state machines.

init

Wait for 
ig comp

Wait for 
wg comp

Wait for 
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished / 
issue_layer_fwd_pass_compute()

finished & !last_layer / 
go_to_next_layer()

Finished & last_layer / 
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),
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go_to_previous_layer(),
Issue_wg_compute()fwd-pass states

Input-grad states

weight-grad 
states

Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
compute

Inference
compute

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

NPU1

NPU2



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).

Workload-specific metadataTraining loop



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).

# of layers



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).

Layer description



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).

Layer name



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).

Fwd-pass 
compute

Fwd-pass 
comm 
type

Fwd-pass 
comm

size



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).
Input-grad 
compute

Input-grad 
comm type

Input-grad 
comm size



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).
Weight-grad 

compute
Weight-grad 
comm type

Weight-grad 
comm size



Text-Based Workload Input
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• Captures the static structure of the workload (training loop).
Parameter-

update 
latency



System Layer

34MLSys 2022 tutorial  Saeed Rashidi| School of ECE | Georgia Institute of Technology



System Layer Collective Implementation
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• Code Structure

astra-sim

workload system network
frontend

Sys.cc

System layer main file

Collective topology

Implements different collective algorithms Implements different logical topologies 
to be used by collective algorithms



System Layer Collective Implementation
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• Each collective algorithm works based on a logical topology.

• Logical topologies are implemented in “system/topology/*” and instantiated in sys.cc.

• Collective algorithms are implemented in “system/topology/*” and instantiated in sys.cc.
• Collective algorithms can be implemented using state machines. 



System Layer Collective Implementation
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• Collective algorithms can be implemented using state machines. 

NPU1

NPU2NPU4

NPU3

1234

1

2

3

4

1 2 3 4

1

2

3

4

init

Wait for 
recv

Wait for 
reduce

Wait for 
recv

done

Node1 FSM

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished & 

last_msg/
send(msg,2),
recv(msg,4)

Finished & 
!last_msg/
send(msg,2),
recv(msg,4)

Finished & 
last_msg/



System Layer Collective Implementation
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• Collective algorithms can be implemented using state machines. 

1234

1

2

3

4

1 2 3 4

1

2

3

4

init

Wait for 
recv

Wait for 
reduce

Wait for 
recv

done

Node1 FSM

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished & 

last_msg/
send(msg,2),
recv(msg,4)

Finished & 
!last_msg/
send(msg,2),
recv(msg,4)

Finished & 
last_msg/

NPU1

NPU2NPU4

NPU3



System Layer Collective Implementation
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• Collective algorithms can be implemented using state machines. 

init

Wait for 
recv

Wait for 
reduce

Wait for 
recv

done

Node1 FSM
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1

3

4

1 2 4

1

2

3
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Finished &
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Finished & 
last_msg/

NPU1

NPU2NPU4

NPU3



System Layer Collective Implementation
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• Collective algorithms can be implemented using state machines. 

init

Wait for 
recv

Wait for 
reduce

Wait for 
recv

done

Node1 FSM

23

3

4

1 4

1

2

Reduce-Scatter done!

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished & 

last_msg/
send(msg,2),
recv(msg,4)

Finished & 
!last_msg/
send(msg,2),
recv(msg,4)

Finished & 
last_msg/

NPU1

NPU2NPU4

NPU3



System Layer Collective Implementation

41MLSys 2022 tutorial  Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines. 
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System Layer Collective Implementation
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• Collective algorithms can be implemented using state machines. 
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3
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System Layer Collective Implementation
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• Collective algorithms can be implemented using state machines. 

init

Wait for 
recv

Wait for 
reduce

Wait for 
recv

done

node1 FSM
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1

2

3

2 3 4

1

3

4 1

2

3

4

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished & 
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System Layer Collective Implementation
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• Collective algorithms can be implemented using state machines. 

init

Wait for 
recv

Wait for 
reduce

Wait for 
recv

done

/ send(2,msg),
recv(4,msg)

node1 FSM

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished & 

last_msg/
send(msg,2),
recv(msg,4)

Finished & 
!last_msg/
send(msg,2),
recv(msg,4)

Finished & 
last_msg/

All-Gather done!

1234

1

2

3

4
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1

2

3

4

NPU1

NPU2NPU4

NPU3



Collective Scheduler
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• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up 

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue



Collective Scheduler
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• There are one/multiple queue(s) per each physical network dimension.
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• There are one/multiple queue(s) per each physical network dimension.
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• There are one/multiple queue(s) per each physical network dimension.
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• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.
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Collective Policy for 
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Constant delay before NPU sending a message
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Max running chunks per each physical network dimension
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# of chunks to split each collective into
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Speed-up the simulation
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System Input
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Hierarchical collective algorithm implementation

21

21 21

21

21 21

NPU Intra-package scale-up 

Inter-package scale-up Package



Network Layer
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Network Layer Structure
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• Network backends are maintained separately and are imported as submodule.

extern

googletest network_
backend compute

analytical garnet

Analytical network 
simulator

Garnet network 
simulator

New: ns3

NS3 network simulator (please 
refer to the codebase for more 
info)



Simulation Control Flow
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void main(){

Instantiate NetworkAPI[];
Instantiate System[];

for(auto &s:system){
s->workload.fire();

}
process_all_events();
return;
}

• The main file is implemented inside network layer.

• Network layer creates corresponding System and NetworkAPI instances.

• Each system layer instance internally creates its workload layer instance.

Where do instantiations happen?
Analytical backend: analytical/src/main.cc
Garnet backend: garnet/gem5_astra/src/mem/ruby/network/garnet2.0/NetworkInterface.cc

Network Layer



Garnet vs. Analytical 
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Analytical Garnet

Supports hierarchical topologies Supports switch-based  and 
torus-based topologies

Each level in hierarchy can be 
switch, ring, FC

Supports credit-based flow 
control

Uses simple link latency, BW 
analytical model to get latency.

Performs packetization, flow 
control, congestion 
modeling, etc.

Fast Slow for large systems & big 
models

Accurate when comm patterns 
are congestionless.

Accurate in all scenarios.

• Regular topologies + topology-aware collectives 
make traffic patterns to be congestionless (in 
most cases), enabling analytical backend to 
calculate latencies fast and accurately.   



Network Input
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21

21 21

21

21 21

NPU Intra-package scale-up 

Inter-package scale-up Package

Garnet network input
Analytical network input
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ASTRA-SIM Run Script
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A Sample Run Script
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A Sample Run Script
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Runtime parameters



ASTRA-SIM Reports
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Overall Results
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• Endtoend.csv.
Layer name



Overall Results
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• Endtoend.csv.
Run name



Overall Results
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• Endtoend.csv. Compute times (us)



Overall Results
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• Endtoend.csv. Raw communication times (us)



Overall Results
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• Endtoend.csv. Exposed communication times (us)



Overall Results
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• Endtoend.csv.
Total compute & exposed 

communication times across 
all layers (us)



Overall Results
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• Detailed.csv.
Average chunk queueing delay per each collective phase (us)



Overall Results

76MLSys 2022 tutorial  Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Detailed.csv.
Average message latency per each collective phase (us) 



ResNet-50 Layer-Wise Raw Comm Latency

• A Torus 3D with total of 32 (2X4X4) nodes is used.
• Data parallel approach is used.
• Raw latency depends on the comm size plus the priority of each layer comm 

(queuing delay).
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ResNet-50 Layer-Wise Compute vs. Exposed
Comm Latency
• Exposed comm latency is observed for the first layer. 
because by the time we reach other layers except that.
first layer, their comm is already finished.
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ResNet-50 Layer-Wise detailed latency

• Queue P2 is becoming the dominant factor due to very 
high speed of P1 (within package) that results most of the
chunks get queued for the next phase (P2). 
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Effect of # of nodes on the Ratio of Total 
Compute vs Total Exposed Comm for ResNet-50
• A Torus 3D with total of 8, 16, 32, 64, 128 nodes are used.
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Effect of Enhanced Compute Time per Node on the
Ratio of Total Compute vs Total Exposed Comm for 
ResNet-50
• A Torus 3D with total of 32 nodes (2X4X4) is used.

Compute Capability
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Workload Generator
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Workload Generator
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• Should receive the GEMM operations (M, N, K dimensions) and
the parallelization strategy as input.
• It uses SCALE-SIM simulator to find the compute times.
• Please see astra-sim/scripts/workload_generator/README.md.

Sample script to call workload generator
Sample MNK input file
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SCALE-SIM
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• https://github.com/scalesim-project/scale-sim-v2
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https://github.com/scalesim-project/scale-sim-v2


Thank you!
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Agenda

August 31st, 2022ASTRA-sim Tutorial @MLSys 2022                                        Tushar Krishna | Georgia Institute of Technology

Time (PDT) Topic Presenter

1:00 – 2:00 Introduction to Distributed DL Training Tushar Krishna

2:00 – 2:20 Challenges on Distributed Training Systems Srinivas Sridharan

2:20 – 3:30 Introduction to ASTRA-sim simulator Saeed Rashidi

3:30 – 4:00 Coffee Break

4:00 – 4:50 Hands-on Exercises on Using ASTRA-sim William Won and Taekyung Heo

4:50 – 5:00 Closing Remarks and Future Developments Taekyung Heo

Tutorial Website
includes agenda, slides, ASTRA-sim installation instructions (via source + docker image)
https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded  

https://astra-sim.github.io/tutorials/mlsys-2022


ASTRA-SIM Validation
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• 8 servers, each having 8 V100 GPUs.
• GPUs within a server are connected through NVSwitch (first gen).
• Each GPU has a dedicated 100 Gbps NIC, connecting it to the TOR switch.
• Below is the single All-Reduce performance comparison of real system 

measurements vs. ASTRA-SIM with analytical backend. 

MLSys 2022 tutorial  Saeed Rashidi| School of ECE | Georgia Institute of Technology

1

10

100

1000

10000

100000

1000000

32	MB 64	MB 128
MB

256
MB

512
MB

1	GB 2	GB 4	GB 8	GB

Ex
ec
ut
io
n	
ti
m
e	
(u
s)

Collective	size
Real	Mesurements Simulation

On average only ~4% difference 
is observed.


