
http://synergy.ece.gatech.edu

STRA
SIM

saeed.rashidi@gatech.edu

Acknowledgments: Srinivas Sridharan (Meta), Sudarshan Srinivasan (Intel)

Saeed Rashidi
Ph.D. Student, School of Electrical & Computer Engineering

Georgia Institute of Technology

ASTRA-SIM Description

http://synergy.ece.gatech.edu/

Overview

3MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• It is a complex problem and can be viewed as
three layers :
• 1. Workload layer (the training loop):

• Parallelism approach
• Compute power
• Communication size & type and
dependency order

• 2. System layer:
• Collective communication algorithm
• Chunk size, schedule of collectives

• 3. Network layer:
• Physical topology
• Congestion control, communication protocol
• Link BW, latency, buffers, routing algorithm

Many tools
In this area
(e.g., Garnet,
Analytical)

Not too many
tools cover
these aspects

Workload Parallel ization Strategy

Compute
Design

Framework-level Scheduling

Communication Mechanism

Messaging/ Transpor t Layer

Endpoint Design and Connectivi ty

Hierarchical Fabr ic Design and Topology

Communication Scheduling

Communication Policy and Pattern

Network Implementation

DNN Models

Memory
Design

Workload
Layer

System
Layer

Network
Layer

How to Model and Evaluate the Communication Effect

4MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Workload layer:
• Supports Data-Parallel, Model-Parallel,

Hybrid-Parallel training loops
• Easy to add new arbitrary training loop

• System:
• Ring based, Tree-based, AlltoAll based, and

multi-phase collectives
• Easy to add new collective communication

• Network:
• Supports Analytical and GARNET Network

simulator
• Analytical:

• Supports hierarchical topologies
• Each level in hierarchy can be switch, ring, FC….
• https://github.com/astra-

sim/analytical/tree/develop
• GARNET:

• Supports switch-based and torus-based
topologies

• Supports credit-based flow control
• https://github.com/georgia-tech-synergy-

lab/gem5_astra/tree/reorgV2
• Can add new topologies in both Analytical

and GARNET

ASTRA-SIM Architecture

5MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

https://github.com/astra-sim/analytical/tree/develop
https://github.com/georgia-tech-synergy-lab/gem5_astra/tree/reorgV2

ASTRA-SIM Runtime Structure
• Each NPU is represented through separate instance of Workload, System, and Network API.

• Network API class is implemented by the network backend.

System
instance 0

Workload
instance 0

Network API
instance 0

NPU 0

System
instance 1

Workload
instance 1

Network API
instance 1

NPU 1

Network
Fabric

System
instance N

Workload
instance N

Network API
instance N

NPU N

MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

ASTRA-SIM Directory

7MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Workload Layer

8MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Workload Layer

9MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Currently, ASTRA-SIM supports 2 types of front-ends:
• Text-based workload parser
• New: Execution graph (EG) based workload parser

• Please refer to the codebase for more info

We cover text-based front-end in this tutorial

Workload Layer Training Loop

10MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Code Structure

astra-sim

workload system network
frontend

Workload.cc

Implements different training loops

Text-Based Workload Training Loop: Data-Parallel Example

11MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

Text-Based Workload Training Loop: Data-Parallel Example

12MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

13MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

14MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

15MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

16MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

17MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

18MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

19MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Layer 0 Layer 1 …….. Layer N-1

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

20MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

fwd-pass states

Input-grad states

weight-grad
states

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

Layer 0 Layer 1 …….. Layer N-1Layer N-2

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

finished /
go_to_previous_layer(),
Issue_wg_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

21MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

finished /
go_to_previous_layer(),
Issue_wg_compute()fwd-pass states

Input-grad states

weight-grad
states

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

22MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

finished /
go_to_previous_layer(),
Issue_wg_compute()fwd-pass states

Input-grad states

weight-grad
states

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

23MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

finished /
go_to_previous_layer(),
Issue_wg_compute()fwd-pass states

Input-grad states

weight-grad
states

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

NPU1

NPU2

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

Text-Based Workload Training Loop: Data-Parallel Example

24MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

finished /
go_to_previous_layer(),
Issue_wg_compute()fwd-pass states

Input-grad states

weight-grad
states

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

NPU1

NPU2

Text-Based Workload Training Loop: Data-Parallel Example

25MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

init

Wait for
ig comp

Wait for
wg comp

Wait for
wg

comm

Wait for
fwd

comp/wait_for_layer_wg_comm()

finished /
issue_layer_fwd_pass_compute()

finished & !last_layer /
go_to_next_layer()

Finished & last_layer /
issue_wg_compute()

finished & first_layer /
Issue_wg_comm(),

finished /
go_to_previous_layer(),
Issue_wg_compute()fwd-pass states

Input-grad states

weight-grad
states

Input gradient
compute

Non-Blocking
Communicate

Weight gradient
compute

Inference
compute

Layer 0 Layer 1 …….. Layer N-1Layer N-2

Finished & !first_layer /
Issue_wg_comm(),
Issue_ig_grad_compute()

NPU1

NPU2

Text-Based Workload Input

26MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).

Workload-specific metadataTraining loop

Text-Based Workload Input

27MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).

of layers

Text-Based Workload Input

28MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).

Layer description

Text-Based Workload Input

29MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).

Layer name

Text-Based Workload Input

30MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).

Fwd-pass
compute

Fwd-pass
comm
type

Fwd-pass
comm

size

Text-Based Workload Input

31MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).
Input-grad
compute

Input-grad
comm type

Input-grad
comm size

Text-Based Workload Input

32MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).
Weight-grad

compute
Weight-grad
comm type

Weight-grad
comm size

Text-Based Workload Input

33MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Captures the static structure of the workload (training loop).
Parameter-

update
latency

System Layer

34MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

System Layer Collective Implementation

35MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Code Structure

astra-sim

workload system network
frontend

Sys.cc

System layer main file

Collective topology

Implements different collective algorithms Implements different logical topologies
to be used by collective algorithms

System Layer Collective Implementation

36MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Each collective algorithm works based on a logical topology.

• Logical topologies are implemented in “system/topology/*” and instantiated in sys.cc.

• Collective algorithms are implemented in “system/topology/*” and instantiated in sys.cc.
• Collective algorithms can be implemented using state machines.

System Layer Collective Implementation

37MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

NPU1

NPU2NPU4

NPU3

1234

1

2

3

4

1 2 3 4

1

2

3

4

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

Node1 FSM

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

System Layer Collective Implementation

38MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

1234

1

2

3

4

1 2 3 4

1

2

3

4

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

Node1 FSM

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

NPU1

NPU2NPU4

NPU3

System Layer Collective Implementation

39MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

Node1 FSM

234

1

3

4

1 2 4

1

2

3

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

NPU1

NPU2NPU4

NPU3

System Layer Collective Implementation

40MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

Node1 FSM

23

3

4

1 4

1

2

Reduce-Scatter done!

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

NPU1

NPU2NPU4

NPU3

System Layer Collective Implementation

41MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

Node1 FSM

2

3

4

11

2

3

4

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

NPU1

NPU2NPU4

NPU3

System Layer Collective Implementation

42MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

Node1 FSM

12

2

3

3 4

1

4 4

3

2

1

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

NPU1

NPU2NPU4

NPU3

System Layer Collective Implementation

43MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

node1 FSM

124

1

2

3

2 3 4

1

3

4 1

2

3

4

/ send(2,msg),
recv(4,msg)

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

NPU1

NPU2NPU4

NPU3

System Layer Collective Implementation

44MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Collective algorithms can be implemented using state machines.

init

Wait for
recv

Wait for
reduce

Wait for
recv

done

/ send(2,msg),
recv(4,msg)

node1 FSM

finished/
reduce(msg, local)

Finished &
!last_msg/ Finished &

last_msg/
send(msg,2),
recv(msg,4)

Finished &
!last_msg/
send(msg,2),
recv(msg,4)

Finished &
last_msg/

All-Gather done!

1234

1

2

3

4

1 2 3 4

1

2

3

4

NPU1

NPU2NPU4

NPU3

Collective Scheduler

45MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue

Collective Scheduler

46MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue

AR

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

Collective Scheduler

47MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue

C1
RS

C2
RS

C3
RS

C4
RS

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

Collective Scheduler

48MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue

C1
RS

C2
RS

C3
RS

C4
RS

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

Collective Scheduler

49MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue C1
AG

C2
RS

C3
RS

C4
RS

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

Collective Scheduler

50MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue C1
AG

C2
RS

C3
RS

C4
RS

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

Collective Scheduler

51MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue

C1
AG

C2
AG

C3
RS

C4
RS

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

Collective Scheduler

52MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue

C1
AG

C2
AG

C3
RS

C4
RS

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

Collective Scheduler

53MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• There are one/multiple queue(s) per each physical network dimension.
• A collective is broken into multiple chunks and inserted into the first queue.
• Queues process chunks in-order.

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Dim 1 queue

Dim 2 queue

Dim 3 queue

C1

C2
AG

C3
RS

C4
RS

AR: All-Reduce
RS: Reduce-Scatter
AG: All-Gather

C1 done

System Input

54MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Collective Policy for

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

System Input

55MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Constant delay before NPU sending a message

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

System Input

56MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Max running chunks per each physical network dimension

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

System Input

57MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

of chunks to split each collective into

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

System Input

58MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Speed-up the simulation

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

System Input

59MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Hierarchical collective algorithm implementation

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Network Layer

60MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Network Layer Structure

61MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Network backends are maintained separately and are imported as submodule.

extern

googletest network_
backend compute

analytical garnet

Analytical network
simulator

Garnet network
simulator

New: ns3

NS3 network simulator (please
refer to the codebase for more
info)

Simulation Control Flow

62MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

void main(){

Instantiate NetworkAPI[];
Instantiate System[];

for(auto &s:system){
s->workload.fire();

}
process_all_events();
return;
}

• The main file is implemented inside network layer.

• Network layer creates corresponding System and NetworkAPI instances.

• Each system layer instance internally creates its workload layer instance.

Where do instantiations happen?
Analytical backend: analytical/src/main.cc
Garnet backend: garnet/gem5_astra/src/mem/ruby/network/garnet2.0/NetworkInterface.cc

Network Layer

Garnet vs. Analytical

63MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Analytical Garnet

Supports hierarchical topologies Supports switch-based and
torus-based topologies

Each level in hierarchy can be
switch, ring, FC

Supports credit-based flow
control

Uses simple link latency, BW
analytical model to get latency.

Performs packetization, flow
control, congestion
modeling, etc.

Fast Slow for large systems & big
models

Accurate when comm patterns
are congestionless.

Accurate in all scenarios.

• Regular topologies + topology-aware collectives
make traffic patterns to be congestionless (in
most cases), enabling analytical backend to
calculate latencies fast and accurately.

Network Input

64

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

Garnet network input
Analytical network input

MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

ASTRA-SIM Run Script

65MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

A Sample Run Script

66MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

A Sample Run Script

67MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Runtime parameters

ASTRA-SIM Reports

68MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Overall Results

69MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Endtoend.csv.
Layer name

Overall Results

70MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Endtoend.csv.
Run name

Overall Results

71MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Endtoend.csv. Compute times (us)

Overall Results

72MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Endtoend.csv. Raw communication times (us)

Overall Results

73MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Endtoend.csv. Exposed communication times (us)

Overall Results

74MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Endtoend.csv.
Total compute & exposed

communication times across
all layers (us)

Overall Results

75MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Detailed.csv.
Average chunk queueing delay per each collective phase (us)

Overall Results

76MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

• Detailed.csv.
Average message latency per each collective phase (us)

ResNet-50 Layer-Wise Raw Comm Latency

• A Torus 3D with total of 32 (2X4X4) nodes is used.
• Data parallel approach is used.
• Raw latency depends on the comm size plus the priority of each layer comm

(queuing delay).

77MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

ResNet-50 Layer-Wise Compute vs. Exposed
Comm Latency
• Exposed comm latency is observed for the first layer.
because by the time we reach other layers except that.
first layer, their comm is already finished.

78MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

ResNet-50 Layer-Wise detailed latency

• Queue P2 is becoming the dominant factor due to very
high speed of P1 (within package) that results most of the
chunks get queued for the next phase (P2).

79MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Effect of # of nodes on the Ratio of Total
Compute vs Total Exposed Comm for ResNet-50
• A Torus 3D with total of 8, 16, 32, 64, 128 nodes are used.

80MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Effect of Enhanced Compute Time per Node on the
Ratio of Total Compute vs Total Exposed Comm for
ResNet-50
• A Torus 3D with total of 32 nodes (2X4X4) is used.

Compute Capability

81MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Workload Generator

82MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Workload Generator

83

• Should receive the GEMM operations (M, N, K dimensions) and
the parallelization strategy as input.
• It uses SCALE-SIM simulator to find the compute times.
• Please see astra-sim/scripts/workload_generator/README.md.

Sample script to call workload generator
Sample MNK input file

MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

SCALE-SIM

84

• https://github.com/scalesim-project/scale-sim-v2

MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

https://github.com/scalesim-project/scale-sim-v2

Thank you!

85MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

Agenda

August 31st, 2022ASTRA-sim Tutorial @MLSys 2022 Tushar Krishna | Georgia Institute of Technology

Time (PDT) Topic Presenter

1:00 – 2:00 Introduction to Distributed DL Training Tushar Krishna

2:00 – 2:20 Challenges on Distributed Training Systems Srinivas Sridharan

2:20 – 3:30 Introduction to ASTRA-sim simulator Saeed Rashidi

3:30 – 4:00 Coffee Break

4:00 – 4:50 Hands-on Exercises on Using ASTRA-sim William Won and Taekyung Heo

4:50 – 5:00 Closing Remarks and Future Developments Taekyung Heo

Tutorial Website
includes agenda, slides, ASTRA-sim installation instructions (via source + docker image)
https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded

https://astra-sim.github.io/tutorials/mlsys-2022

ASTRA-SIM Validation

87

• 8 servers, each having 8 V100 GPUs.
• GPUs within a server are connected through NVSwitch (first gen).
• Each GPU has a dedicated 100 Gbps NIC, connecting it to the TOR switch.
• Below is the single All-Reduce performance comparison of real system

measurements vs. ASTRA-SIM with analytical backend.

MLSys 2022 tutorial Saeed Rashidi| School of ECE | Georgia Institute of Technology

1

10

100

1000

10000

100000

1000000

32	MB 64	MB 128
MB

256
MB

512
MB

1	GB 2	GB 4	GB 8	GB

Ex
ec
ut
io
n	
ti
m
e	
(u
s)

Collective	size
Real	Mesurements Simulation

On average only ~4% difference
is observed.

