

MLSys Tutorial

August 31st, 2022

Enabling HW/SW Co-Design of Distributed Deep Learning Training Platforms

ASTRA-sim Tutorial

Tushar Krishna

Associate Professor, School of ECE Georgia Institute of Technology tushar@ece.gatech.edu

Welcome

Tushar Krishna
Associate Professor, School of ECE
Georgia Institute of Technology
tushar@ece.gatech.edu

Saeed Rashidi
PhD Student, School of ECE
Georgia Institute of Technology
saeed.rashidi@ece.gatech.edu

Will Won

Ph.D. Student, School of CS
Georgia Institute of Technology
william.won@gatech.edu

Taekyung HeoPostdoctoral Fellow, School of ECE
Georgia Institute of Technology

taekyung@gatech.edu

Srinivas Sridharan Research Scientist Meta

ssrinivas@fb.com

Collaborators and Contributors

Sudarshan Srinivasan

Research Scientist, Intel

Tarannum Khan

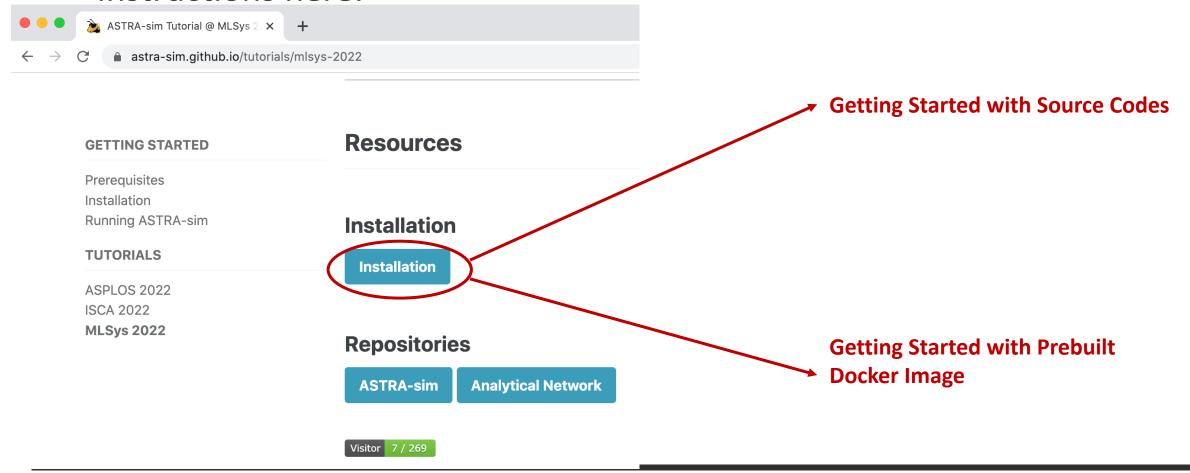
Graduate Student, CS UT Austin

Aditya Akella

Professor, CS UT Austin

+ growing!

Time (PDT)	Topic	Presenter	
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna	
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan	
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi	
3:30 – 4:00	Coffee Break		
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo	
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo	


Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

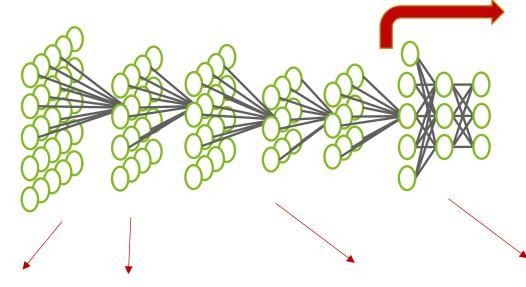
Attention: Tutorial is being recorded

ASTRA-sim Installation

- Please go ahead and install ASTRA-sim!
- Instructions here:

Time (PDT)	Topic	Presenter	
1:00 – 2:00	Introduction to Distributed DL Training	Tushar Krishna	
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan	
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi	
3:30 – 4:00	Coffee Break		
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo	
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo	

Tutorial Website


includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded

The engine driving the AI Revolution

Training

Training a deep neural network (DNN) involves feeding it a training dataset to update its weights to model the underlying function representing the dataset

Object Detection

Speech Recognition

CUSTOMERS WHO
BOUGHT THIS ITEM:

ALSO BOUGHT:

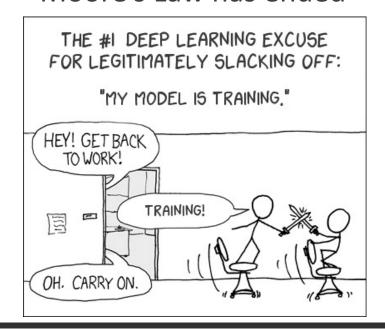
Recommender Systems

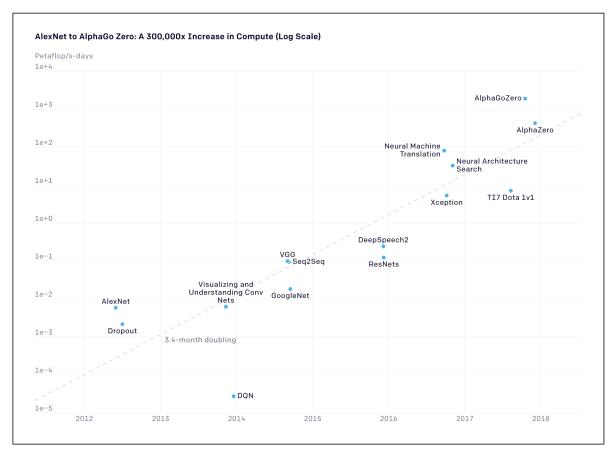
"Training" in the context of ML

- Machine Learning algorithms learn to make decisions or predictions based on data.
- We can categorize current ML algorithms based on the following three characteristics
 - Purpose / Task
 - Anomaly Detection
 - Classification
 - Clustering
 - Dimensionality Reduction
 - Representation Learning
 - Regression
 - Feedback from data
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning
 - Reinforcement learning
 - Method (for hyperparameter optimization)
 - SGD
 - EA
 - Rule-based
 - Topic Models
 - ..

We focus on Supervised Learning with SGD --> most popular for DNNs

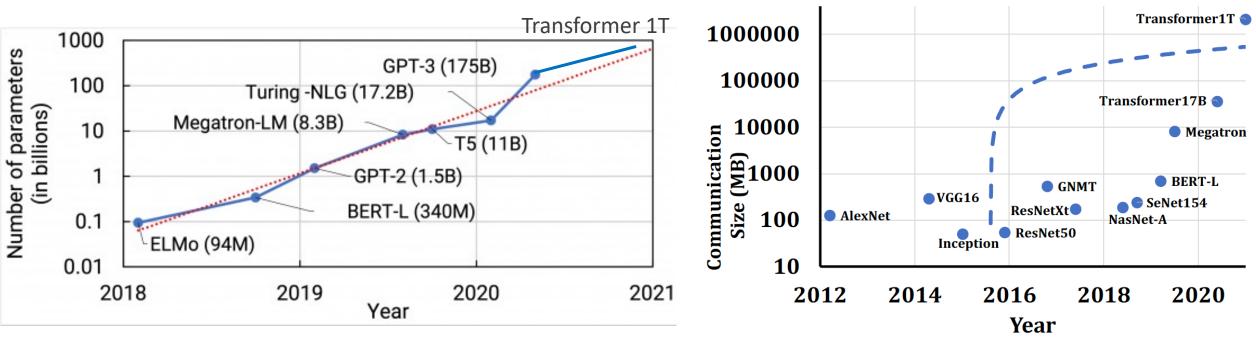
Source: A Survey on Distributed Machine Learning https://dl.acm.org/doi/abs/10.1145/3377454


DL Training: The Phases


- Each training algorithm consists of 3 computation phases:
 - 1. Forward pass (inference):
 - The process of finding output activations using inputs and weights.
 - 2. Weight gradient computation:
 - The process of finding the gradient of weights (with respect to the loss function) using output gradients and inputs.
 - 3. Input gradient computation:
 - The process of finding the gradient of inputs (with respect to the loss function) using output gradients and weights.
- Operations 2 & 3 together are called backpropagation.
- The **training loop** dictates the order in which we issue the basic operations and (possibly) their related communication tasks.

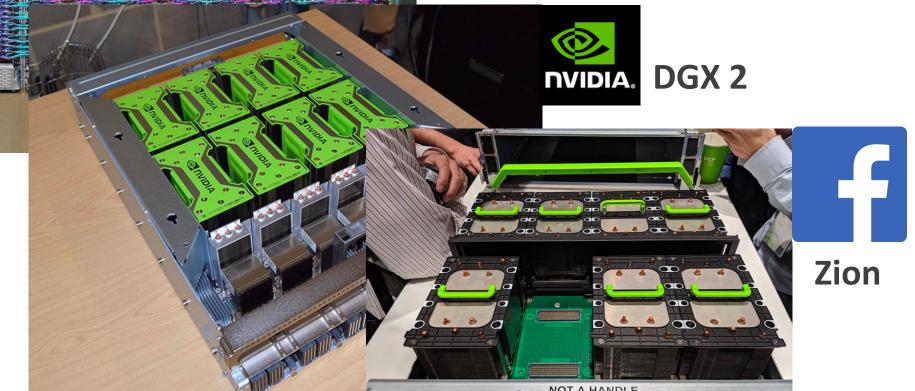
Deep Learning Training Challenge

Training time is increasing


- DNNs are becoming larger
 - Turing NLG: 17.2 B Parameters
 - Megatron LM: 8.3B Parameters
- Training samples are becoming larger
- Moore's Law has ended

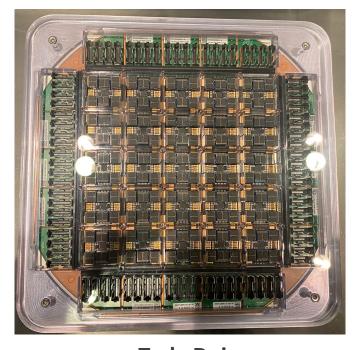
Source: https://openai.com/blog/ai-and-compute/

Key Challenge: Large Models → Large Comms

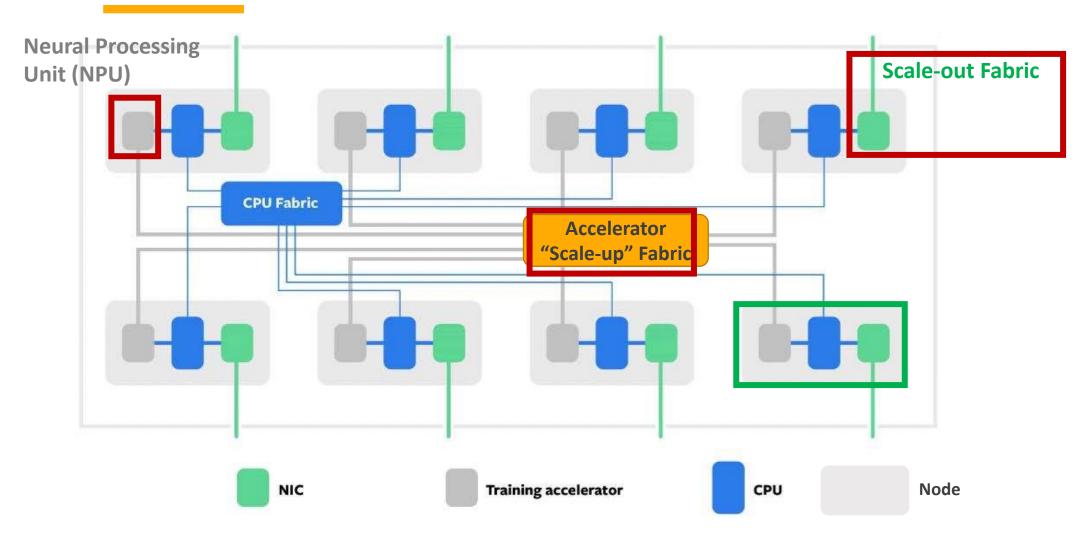

Challenges:

- Multiple NPUs are required to fit large-scale models
- e.g., 16 NPUs for GPT-3 (175B params)
 128 NPUs for Transformer-1T (1T params) (using ZeRO stage 2)

Enter: DL Training Platforms


- ✓ Build customized chips for training
- ✓ Scale the training across more compute nodes

And many more ...

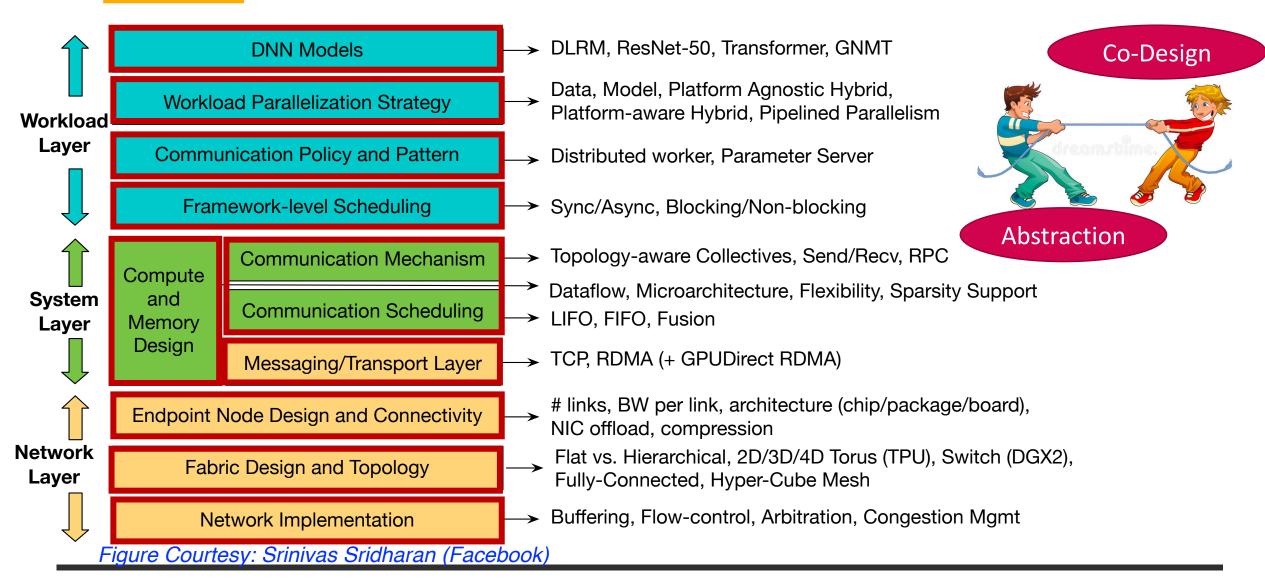

- Cerebras CS2
- Tesla Dojo
- NVIDIA DGX + Mellanox SHARP switches
- Intel Habana
- IBM Blueconnect

•

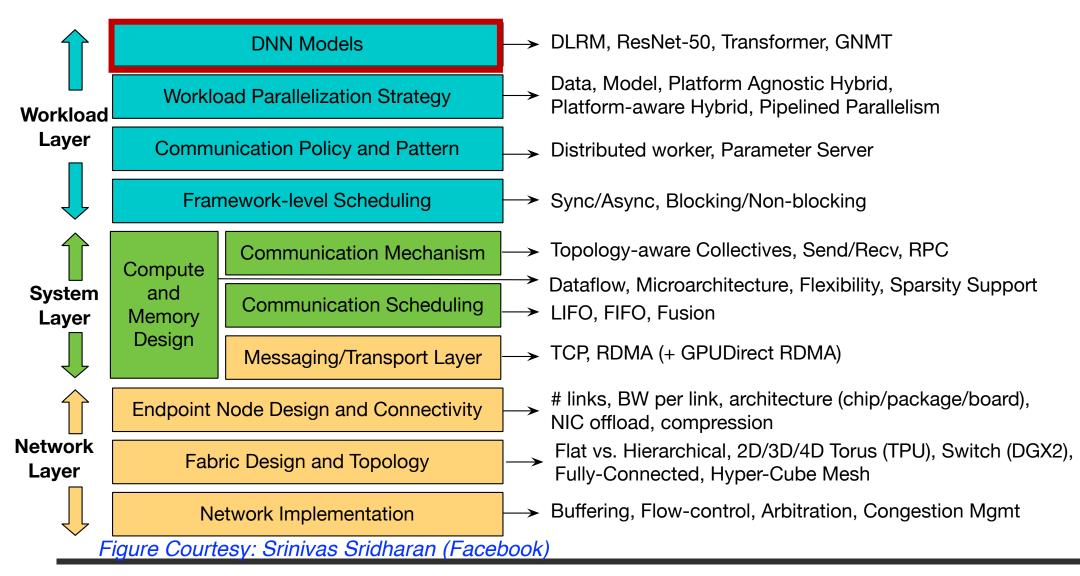
Tesla Dojo

Components of a DL Training Platform

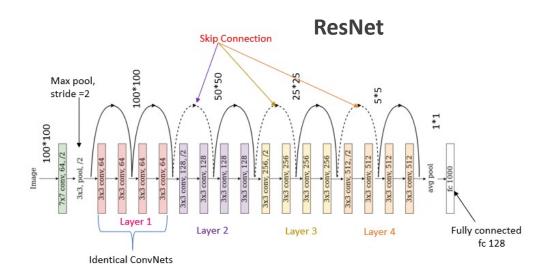
Modified version of source figure from: "Zion: Facebook Next- Generation Large Memory Training Platform", Misha Smelyanskiy, Hot Chips 31"

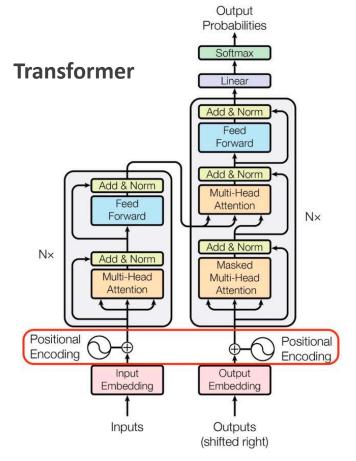

Systems challenges with Distributed Training

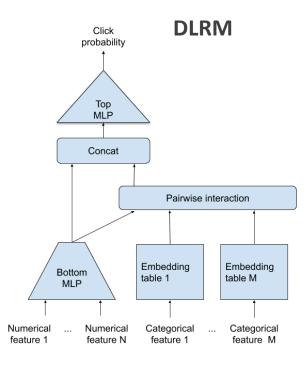
- Communication!
 - Inevitable in any distributed algorithm


- What does communication depend on?
 - synchronization scheme: synchronous vs. asynchronous.
 - parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...

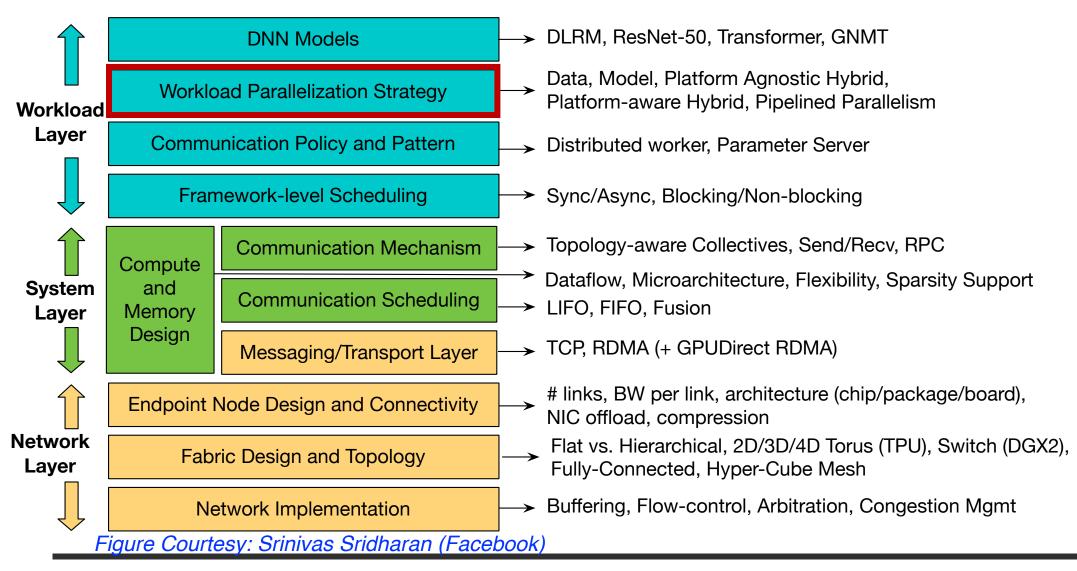
- Is it a problem?
 - Depends ... can we hide it behind compute?
 - How do we determine this?


Understanding DL Training design-space




Distributed Training Stack

DNN Models

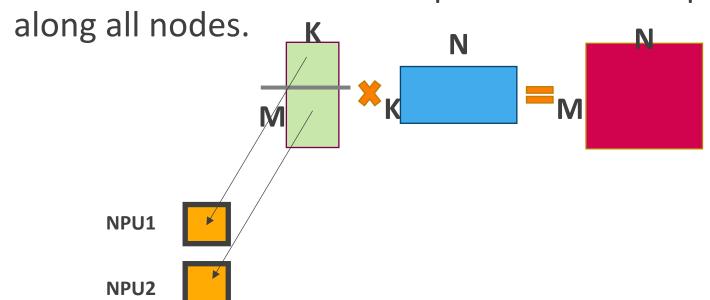


Operator Types: CONV2D, Attention, Fully-Connected, ...

Parameter sizes: Millions to Trillions

Distributed Training Stack

Parallelization Strategies


- The way compute tasks are distributed across different compute nodes. Multiple ways to split the tasks:
 - Split the minibatch (Data-Parallel)
 - Split the model (Model-Parallel)
 - Split the DNN layers: (Pipeline-Parallel)

•

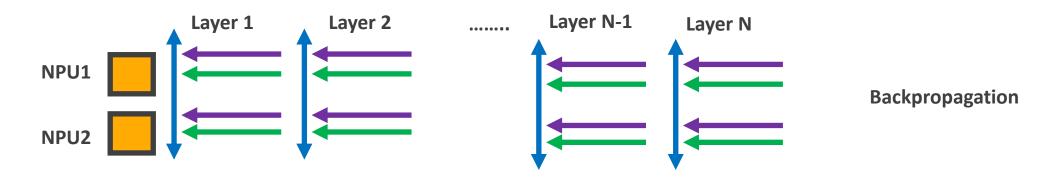
This also defines the communication pattern across different nodes.

Parallelism: Data-Parallel Training

Distribute Data across multiple nodes and replicate model (network)

Parallelism: Data-Parallel Training

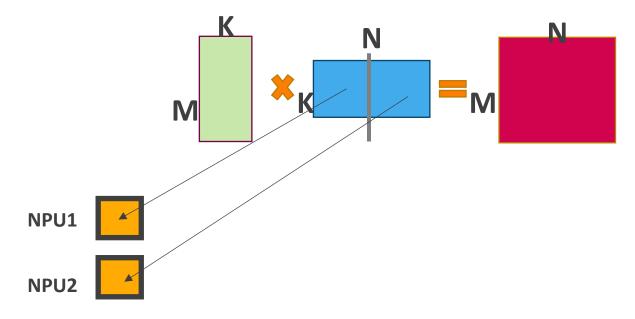
- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- No communication during the forward pass.



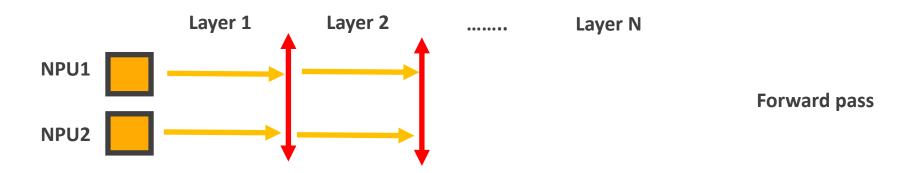
Flow-per-layer: 1.Compute output -> 2. go to the next layer

Parallelism: Data-Parallel Training

- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- Communicate weight gradients during the backpropagation pass.
 - Blocking wait at end of backpropogation for collective before forward pass



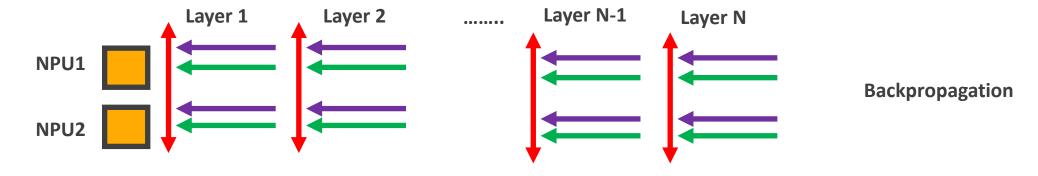
Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer


Parallelism: Model-Parallel Training

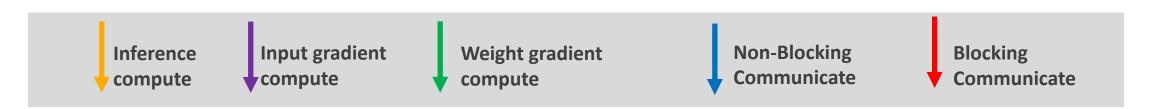
• Distribute Model across all nodes and replicate data along all nodes.

Parallelism: Model-Parallel Training

- Distribute Model across all nodes and replicate data along all nodes.
- Communicate outputs during the forward pass.

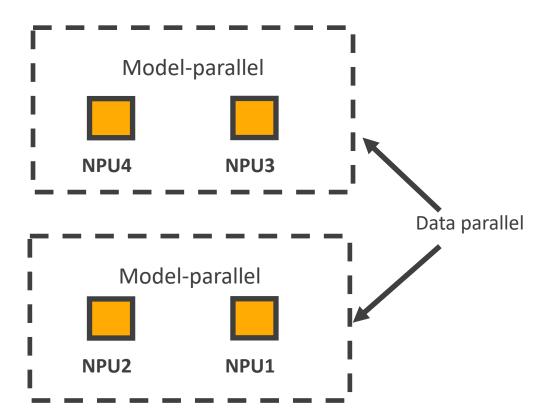


Flow-per-layer: 1.Compute output -> 2. issue output gradient comm -> 3.wait for gradient to be finished -> 4. go to the next layer



Parallelism: Model-Parallel Training

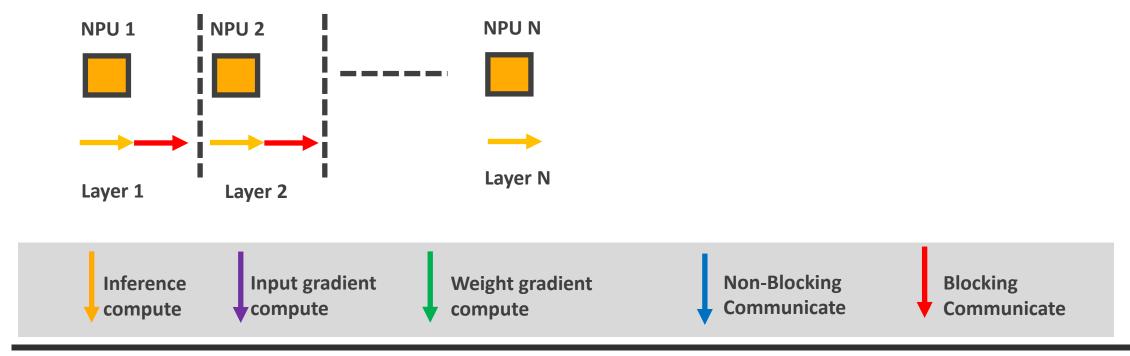
- Distribute Model across all nodes and replicate data along all nodes
- Communicate input gradients during the backpropagation pass.



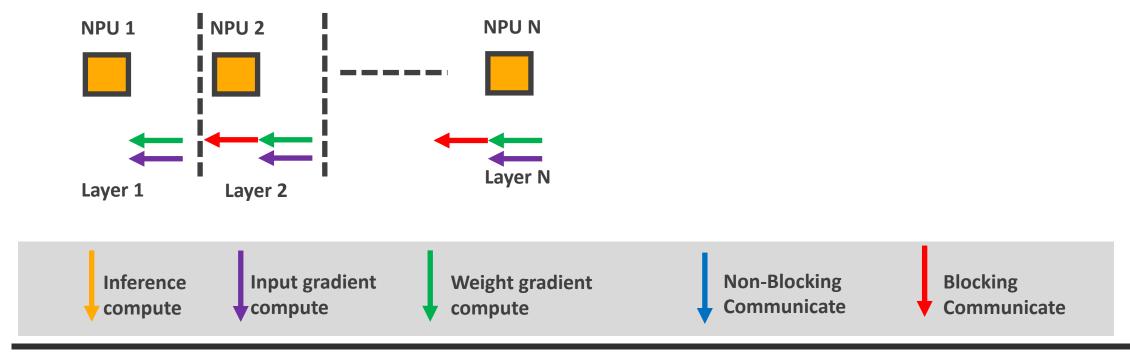
Flow-per-layer: 1.Compute input gradient-> 2.issue input gradient comm -> 3.compute weight gradient -> 4. wait for input gradient -> 5. go to previous layer

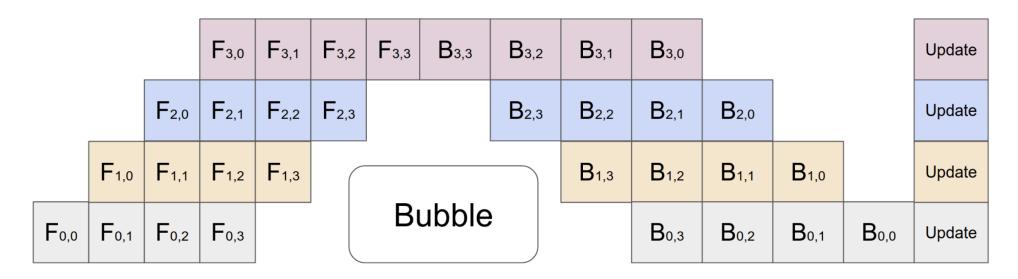
Parallelism: Hybrid Parallel

• Partition nodes into groups. Parallelism within a group is modelparallel, across the groups is data-parallel, or vice versa.

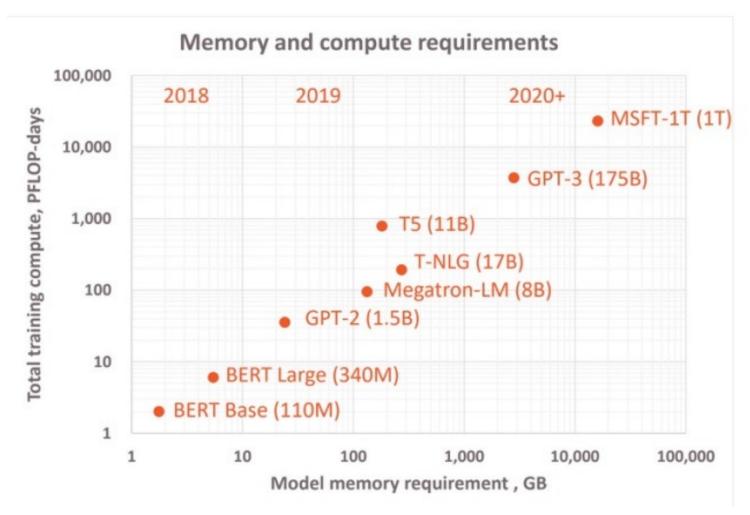


Parallelism	Activations during the forward pass	Weight gradients	Input gradients
Data		✓	
Model	✓		✓
Hybrid	partially	partially	partially


• Distribute DNN layers across all nodes.


- Distribute DNN layers across all nodes.
- Communicate outputs during the forward pass.

- Distribute DNN layers across all nodes.
- Communicate input gradients during the backpropagation.


- Decompose minibatch into microbatches and propagate them to the pipeline in-order to enhance utilization
 - Challenge bubbles

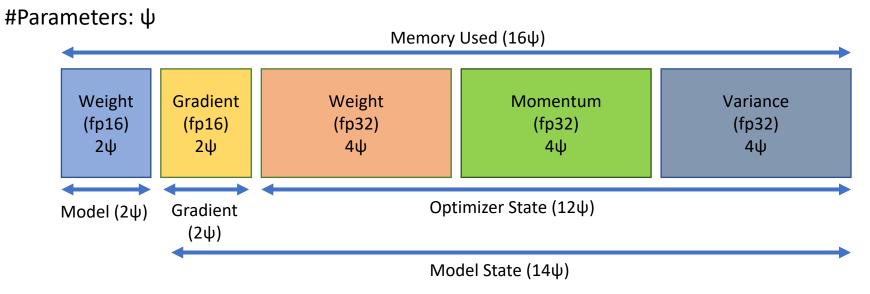
F_{m,n}: forward-pass corresponding to micro-batch #n at device #m.

B $_{m,n}$: back-propagation corresponding to micro-batch #n at device #m.

Need for more sophisticated schemes ...

1000x larger models 1000x more compute In just 2 years

Today, GPT-3 with 175 billion params trained on 1024 GPUs for 4 months.

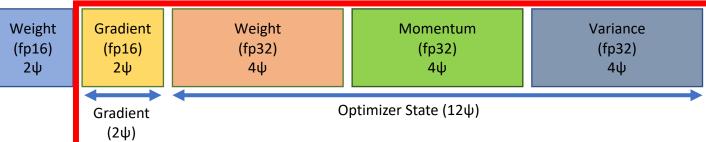

Tomorrow, multi-Trillion parameter models and beyond.

Source: Cerebras (Hot Chips 2021)

Example 1: Microsoft ZeRO

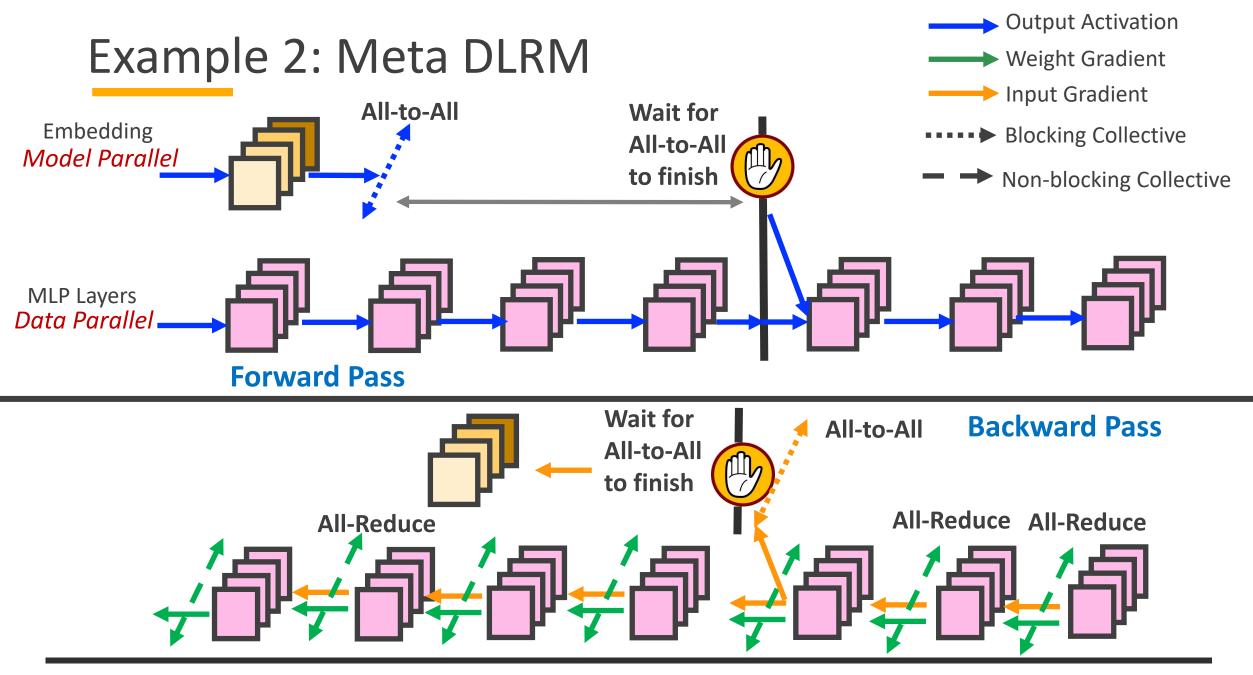
Motivation

- Data Parallelism (DP): Cannot fit large models
- Model Parallelism (MP): Computations too fine-grained, Large communication overhead, Layer-dependent design
- Large Memory Overhead for Model + Optimizer state
 - 8x overhead over model state!

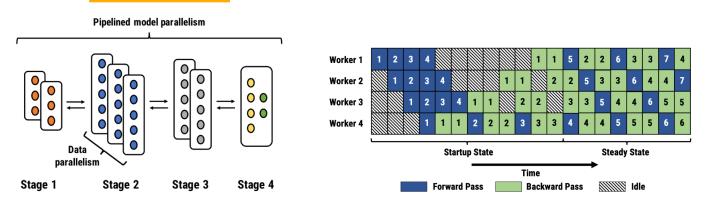

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Example 1: Microsoft ZeRO

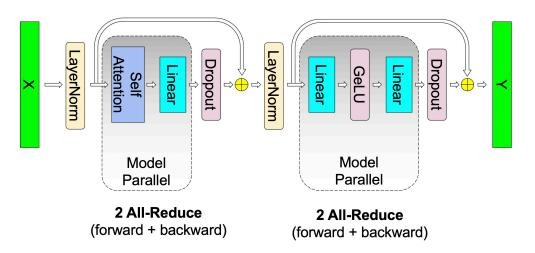
ZeRO: Zero Redundancy Optimizer


Reduce redundant Model State

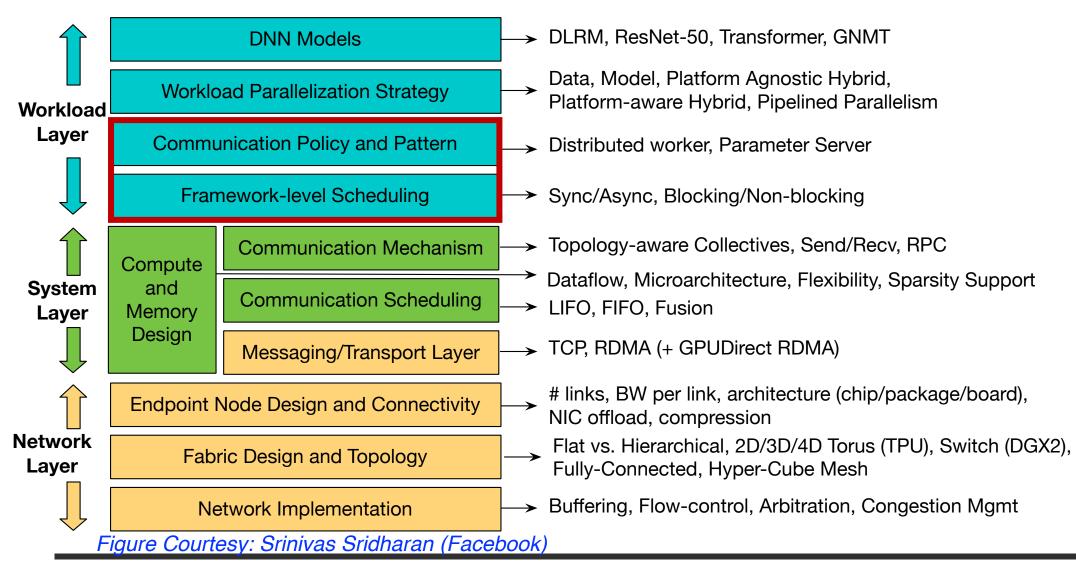
- Partition Optimizer state
- Partition Gradient state
- Memory vs Communication



	gpu ₀	gpu _i	gpu _{N-1}	Memory Consumed	K=12 Ψ=7.5B N _d =64
Baseline				$(2+2+K)*\Psi$	120GB
P _{os}				$2\mathbf{\Psi} + 2\mathbf{\Psi} + \frac{K * \mathbf{\Psi}}{N_d}$	31.4GB
P _{os+g}				$2\Psi + \frac{(2+K)*\Psi}{N_d}$	16.6GB
P _{os+g+p}				$\frac{(2+2+K)*\Psi}{N_d}$	1.9GB
	Parameters	Gradients	Optimizer Stat	es	

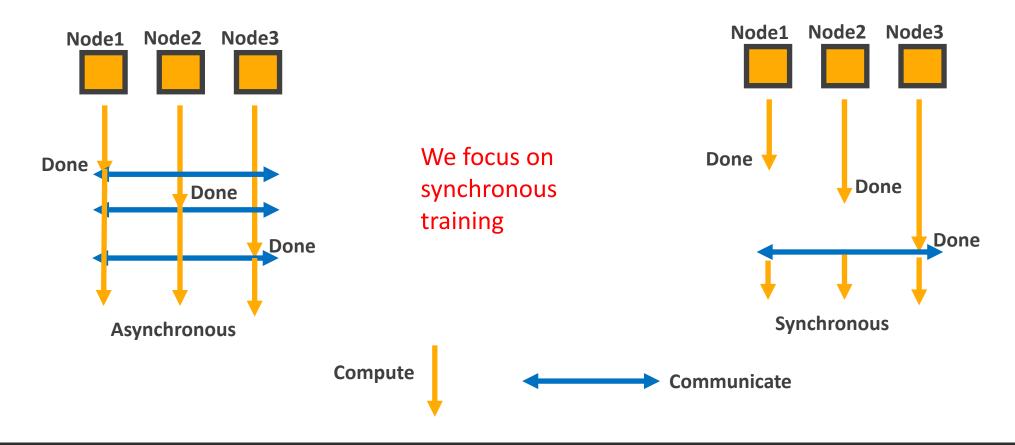

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

More recent examples


PipeDream (Microsoft)

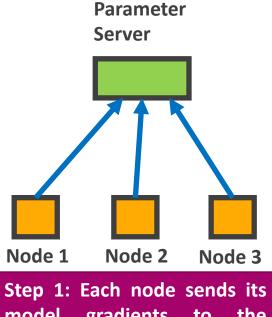
MegatronLM (NVIDIA)

Distributed Training Stack

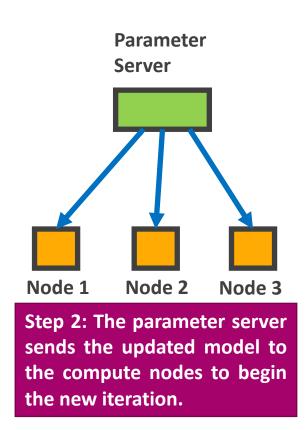


Model Parameter Update Mechanisms

		Synchron	ization
		Asynchronous	Synchronous
Communication	Parameter-server	Centralized or Distributed	Centralized or Decentralized
Handling	Collective-based	N/A	Distributed

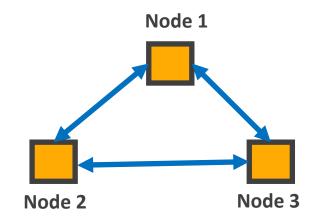

Synchronization: Sync. vs. Async. Training

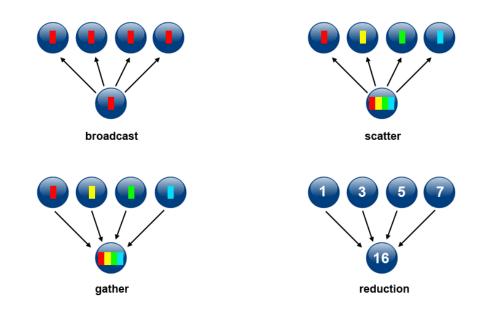
- Defines when nodes should exchange data
 - Affects convergence time



Communication Handling

Parameter Server




Step 1: Each node sends its model gradients to the parameter server to be reduced with other gradients and update the model

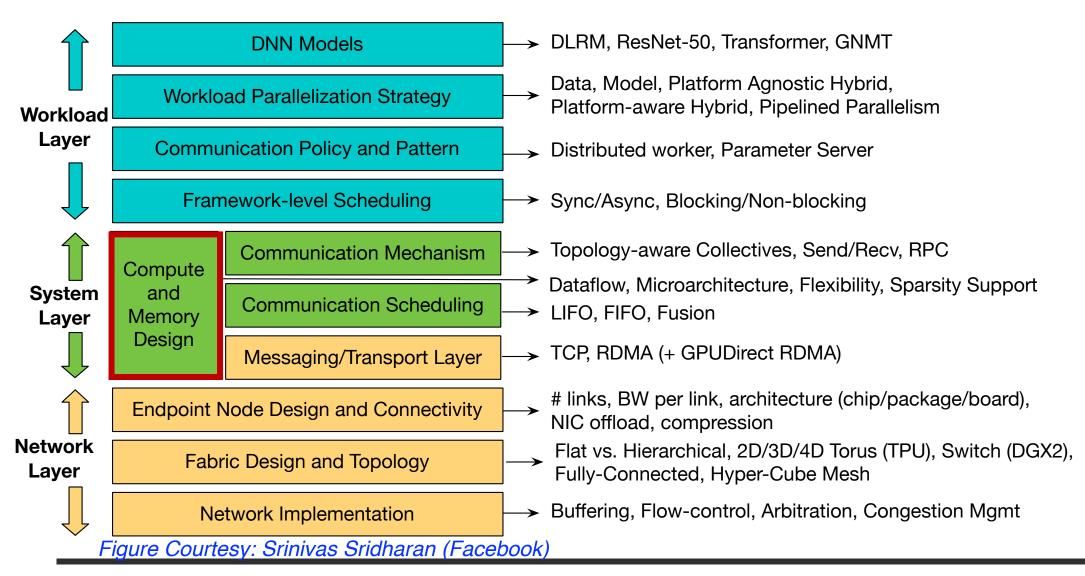
Communication Handling

 Collective-based: Compute Nodes directly talk to each other to globally reduce their gradients and update the model through *All-Reduce* communication pattern.

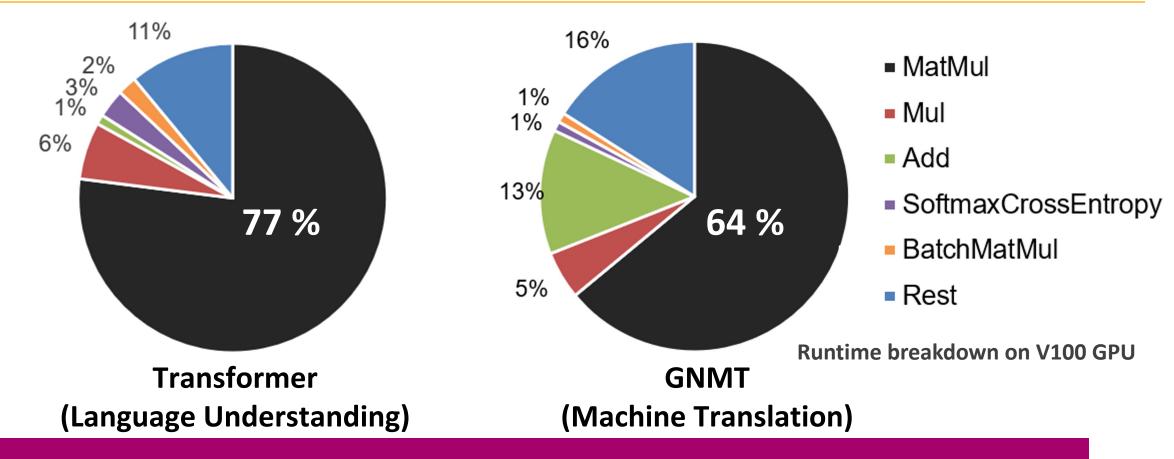
"Collective Communication" (from MPI)

More details later

Exchanging Output Activations or Input Gradients:


- It may be required depending on the **parallelization strategy** (discussed next)
- Handled either via collective based patterns or direct Node-to-Node sends/recvs (no parameter server is used).

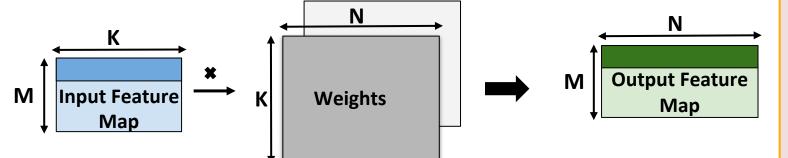
When are collectives needed?


	Model (i.e. weight) Updates	Input Gradient Exchange	Output Activation Exchange
Param-server	N	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N
Collective-based	Y (All-Reduce)	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N

^{*} All-reduce, All-gather, Reduce-scatter, All-to-All

Distributed Training Stack

Key Compute Kernel during DL Training

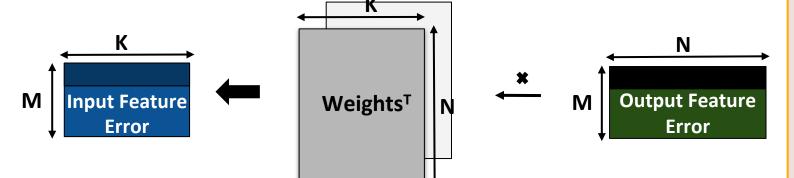


Matrix multiplications (GEMMs) consume around **70%** of the total runtime when training modern deep learning workloads.

GEMMs in Deep Learning

Forward Pass

(Inference and Training)

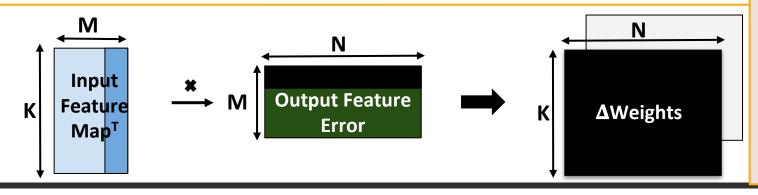


GEMM MNK
Dimension
Representation

M dim: batch size

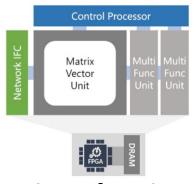
Backward Pass

(Training)

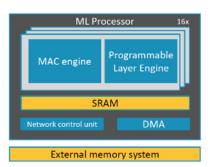


N dim: number of channels in the next layer

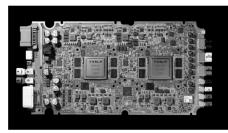
K dim: [H * W * C]


Gradient Computation

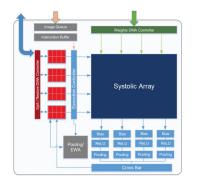
(Training)



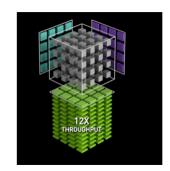
Hardware for Accelerating GEMMs


SIMD Architectures

Microsoft Brainwave



ARM Trillium



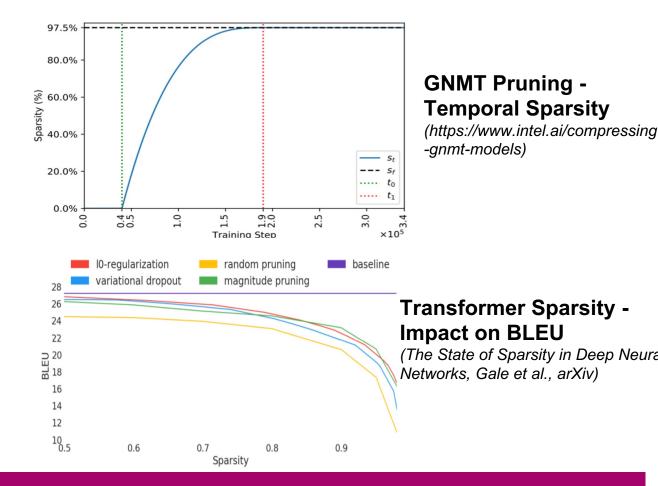
Tesla FSDC

Systolic Architectures

Xilinx xDNN

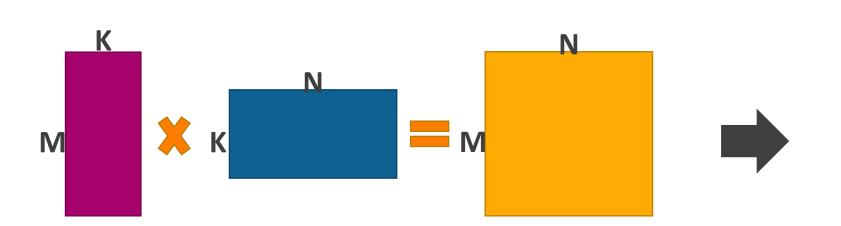
Nvidia Tensor Cores

Google TPU


Key Feature:

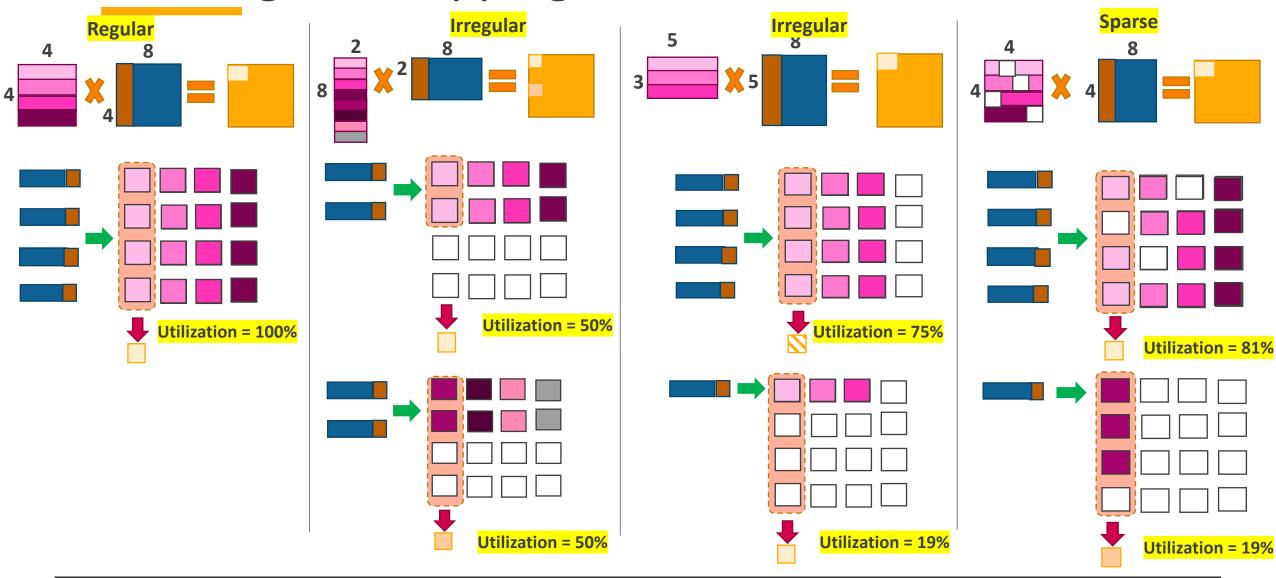
- Specialized support for GEMMs
- Maximize HW TFLOPS

Workload Trends: Irregular & Sparse


Workload	Application	Example Dimensions				
		M	N	K		
GNMT		128	2048	4096		
	Machine	320	3072	4096		
	Translation	1632	36548	1024		
		2048	4096	32		
DoonPonch	General	1024	16	500000		
DeepBench	Workload	35	8457	2560		
Tuenefoune	Language	31999	1024	84		
Transformer	Understanding	84	1024	4096		
NCE	Collaborative	2048	1	128		
NCF	Filtering	256	256	2048		

GEMMs are irregular (non-square)!

GEMMs are Sparse! Weight sparsity ranges from **40%** to **90%**. Activation sparsity is approximately **30%** to **70%** from ReLU, dropout, etc.

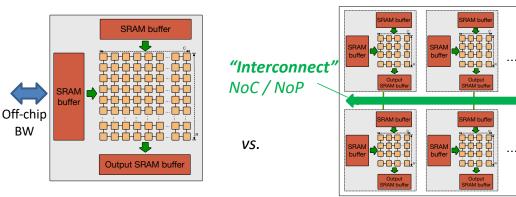

Challenges – Mapping Utilization

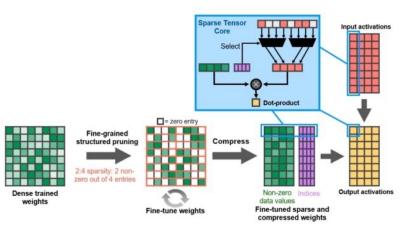
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Challenges – Mapping Utilization

Enhancing Utilization

Handling Irregular GEMMs

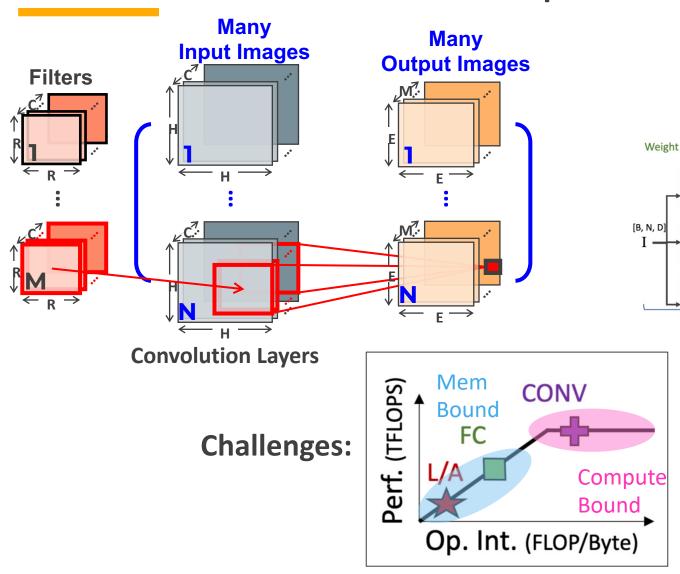

• One large array (e.g., Google TPU) versus several smaller arrays (e.g., NVIDIA

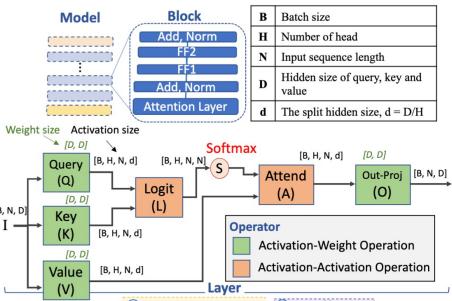

Tensor cores)

• Trade-off: reuse vs utilization

Handling Sparse GEMMs

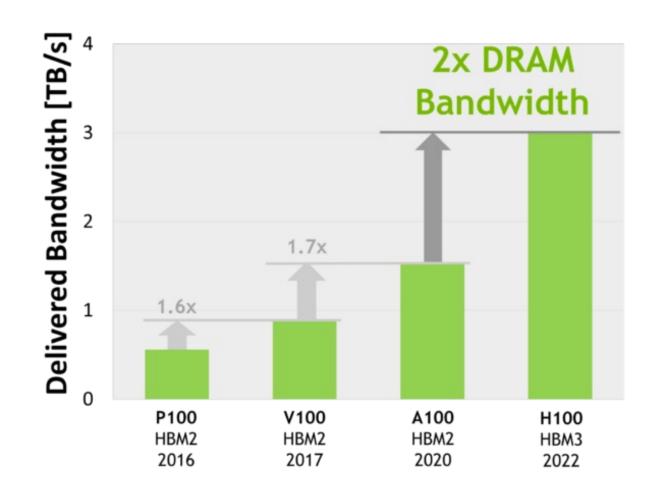
- Structured Sparsity Support
 - E.g., NVIDIA A100
- Unstructured Sparsity Support
 - Active research going on

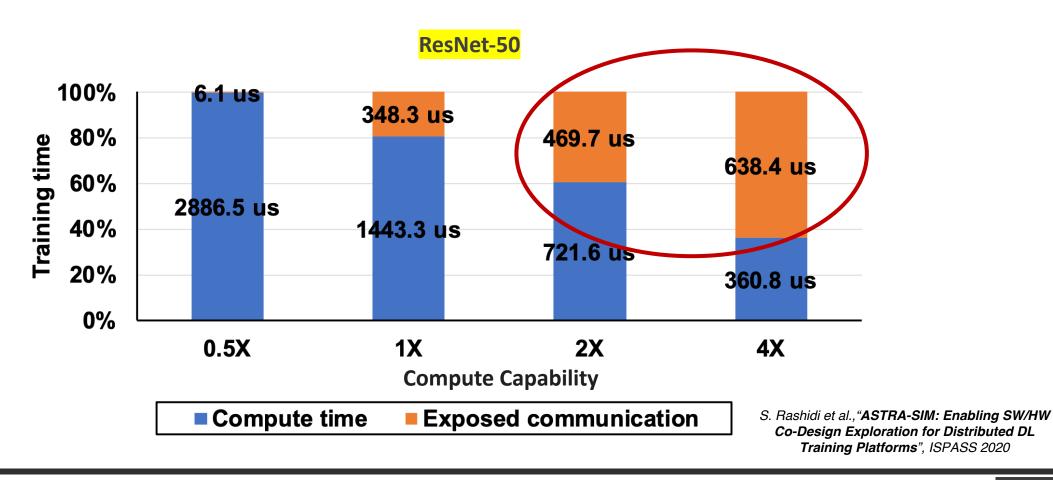




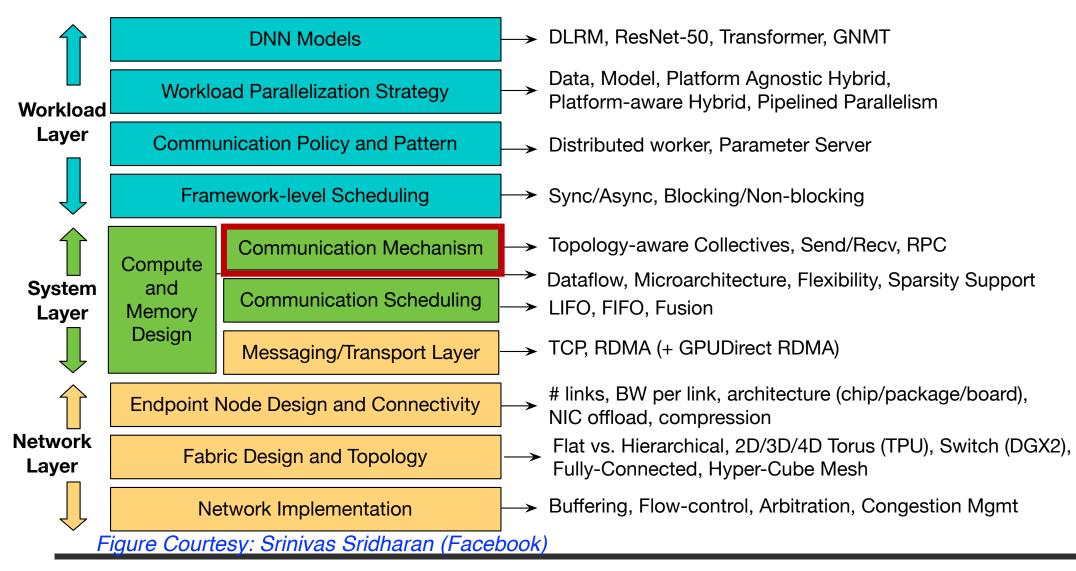
NVIDIA A100 supports 4:2 structured sparsity

Off-chip


Workload Trends: Low Op Intensity


Attention Layer in Transformer Models

Enhancing Memory Bandwidth



Effect of Enhanced Compute Efficiency on Training

• A Torus 3D with total of 32 nodes (2X4X4) is used.

Distributed Training Stack

Different Kinds of Collective Algorithms

Reduce-Scatter:

- Used during input-output exchange due to model-parallelism
- Implementation Algorithms: Ring-Based, Direct-based, etc.

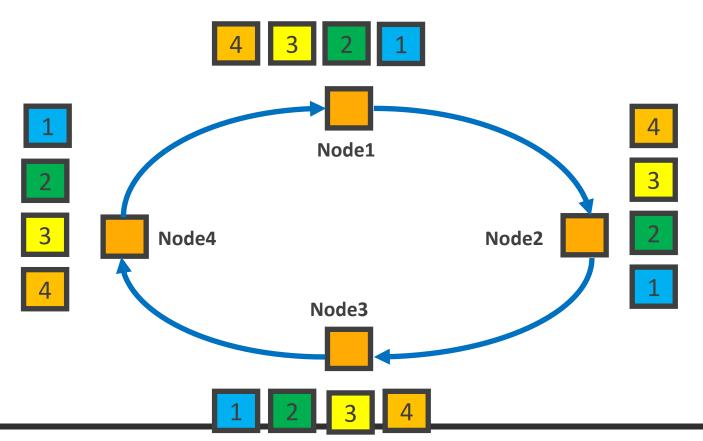
All-Gather:

- Used during input-output exchange due to model-parallelism
- Implementation Algorithms: Ring-Based, Direct-based, etc.

All-Reduce (Reduce-Scatter + All-Gather):

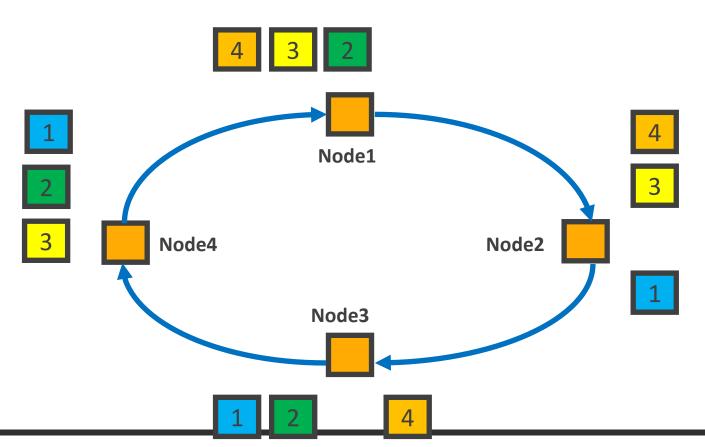
- Used during input-output exchange due to model-parallelism, or during model-parameter update.
- Implementation Algorithms: Ring-Based, Direct-based, Tree-based, Halving-doubling, etc..

• All-To-All:

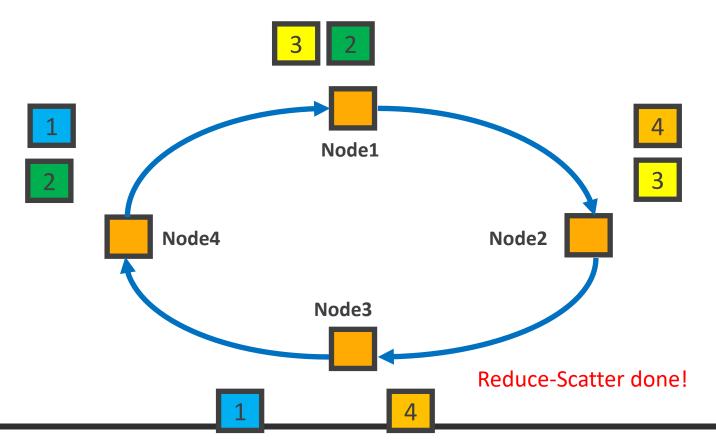

- Used during input-output exchange due to model-parallelism (e.g., distributed embedding layer on DLRM DNN.).
- Implementation Algorithms: Direct-based, Ring-Based, etc..

Node	Node	Node	Node	Node	Node	Node	,Node					
0	1	2	3	0	1	2	3					
$X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ Y_2^{(0)}$	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_2^{(1)}$	$X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ Y^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow$ $X_2^{(3)}$ $V^{(3)} \text{Re}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_j X_2^{(j)}$	$\sum X_3^{(i)}$					
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	Λ \hat{a}	atter	l		-j 3					
Node	Node	Node	Node	Node	Node,	Node _i	Node					
0	1	2	3	_ 0	1	2	3					
X0	Ì			X0	X0	<i>X</i> 0	<i>X</i> 0					
	<i>X</i> 1		→	- X1	<i>X</i> 1	<i>X</i> 1	<i>X</i> 1					
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	<i>X</i> 2					
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3					
	l		All-gather									
		l		ther	ı	ı						

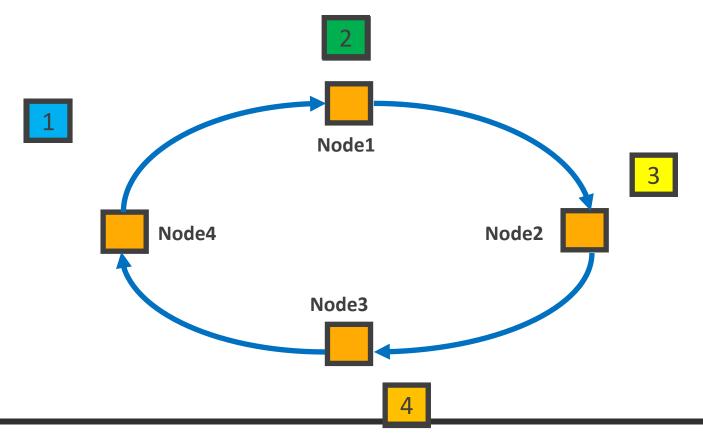
Node Node Node Node			Node	Node	Node	Node		
0	1	2	3	_0_	1	2	3	
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_j X_0^{(j)}$				
$X^{(0)}$	$X_{1}^{(1)}$	$X_{1}^{(2)}$	$X_1^{(3)}$ -	$\sum_{j} X_1^{(j)}$				
$X^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_{2}^{(3)}$	$\sum\nolimits_{j} X_{2}^{(j)}$				
$X_{2}^{(0)}$	$X_{3}^{(1)}$	$X_{3}^{(2)}$	$X_{3}^{(3)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	
Node Node Node Node Node Node Node Node								
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_{3}^{(3)}$ All-re	$\sum_{j} X_3^{(j)}$ educe	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	


Noue	noae	_i noae	noae	Node	noae	Noae	Noae
0	1_	2	3	_0_	1	2	3
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$			$X_2^{(0)}$	
$X_2^{(0)}$	$X_2^{(1)}$	$X_2^{(2)}$	$X_2^{(3)}$	$X_0^{(2)}$	$X_1^{(2)}$	$X_2^{(2)}$	$X_3^{(2)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_3^{(3)}$	$X_0^{(3)}$	$X_1^{(3)}$	$X_2^{(3)}$	$X_3^{(3)}$
$X_1^{(0)}$ $X_2^{(0)}$	$X_1^{(1)}$ $X_2^{(1)}$	$X_1^{(2)}$ $X_2^{(2)}$	$X_1^{(3)} \rightarrow$	$X_0^{(1)} \\ X_0^{(2)} \\ X_0^{(3)}$	$X_1^{(1)}$ $X_1^{(2)}$	$X_2^{(0)}$ $X_2^{(1)}$ $X_2^{(2)}$ $X_2^{(3)}$	X X

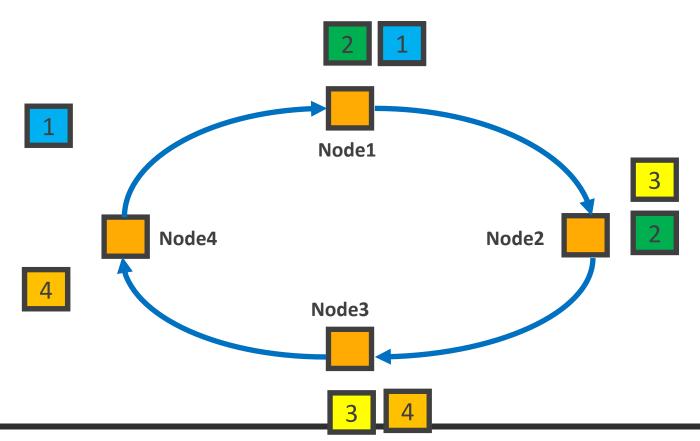
- A ring with N nodes partitions data to N messages
- Collective Communication Flow:


Node	Node	Node	Node	Node	Node	Node	Node
0_	_1_	2	3	0	1	2	3
$X_0^{(0)} X_1^{(0)} X_2^{(0)}$	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)}$	$ \begin{array}{c} X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \end{array} $	$\sum_{j} X_0^{(j)}$	$\sum_j X_1^{(j)}$	$\sum_i X_2^{(j)}$	
$X_3^{(0)}$	$X_2^{(1)}$	$X_3^{(2)}$	$X_2^{(3)}$ Re				$\sum_j X_3^{(j)}$
5	Node	Node	Node	atter Node ,	Node.	Node.	Node
0	1	2	3	0	$\begin{bmatrix} 1 \end{bmatrix}$	2	3
<i>X</i> 0				X0	X0	<i>X</i> 0	<i>X</i> 0
110	<i>X</i> 1		→	- X1	<i>X</i> 1	<i>X</i> 1	<i>X</i> 1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	<i>X</i> 2
			<i>X</i> 3	X3	<i>X</i> 3	<i>X</i> 3	X3
			All-ga	ther	ı	ı	
Node	Node	Node	Node	Node	Node	Node	Node
0	_1_	2	3	0	1	2	3
$X_0^{(0)} X_1^{(0)} X_1^{(0)} X_2^{(0)} X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)}$ $X_1^{(2)}$ $X_2^{(2)}$ $X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-re	$\sum_{j} X_0^{U_j}$ $\sum_{j} X_2^{U_j}$ $\sum_{j} X_2^{U_j}$ $\sum_{j} X_3^{U_j}$ duce	$\begin{array}{c} \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$ $\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$

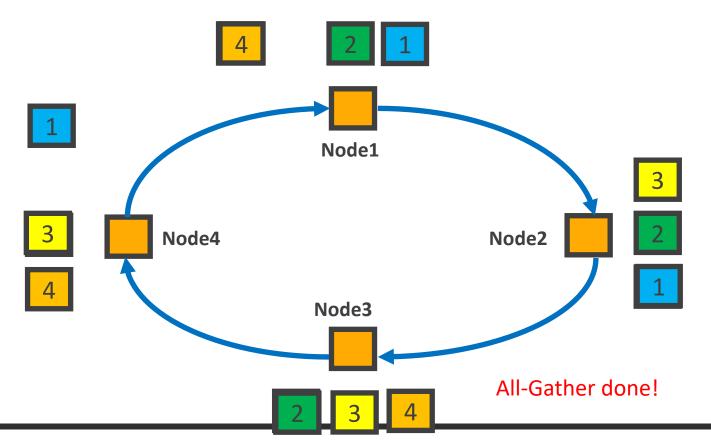
- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

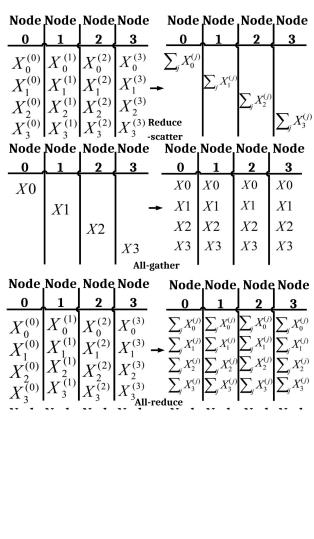

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3_	0	1	2	3
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} X_1^{(1)}$	$X_0^{(2)} X_1^{(2)}$	$\sim 10^{-1}$	$\sum_{j} X_0^{(j)}$	$\sum_j X_1^{(j)}$		
$X_2^{(0)}$ $X_2^{(0)}$	$X_{2}^{(1)}$ $X_{2}^{(1)}$	$X_{2}^{(2)} X_{2}^{(2)}$	$X_{2}^{(3)}$ $X_{2}^{(3) \text{Re}}$			$\sum_{j} X_2^{(j)}$	$\sum_j X_3^{(}$
Node	Node	. Node	Node	atter Node	Node.	Node.	Node
0	1	2	3	0	1	2	3
<i>X</i> 0	Ì			<i>X</i> 0	<i>X</i> 0	<i>X</i> 0	<i>X</i> 0
	<i>X</i> 1		→	- X1	<i>X</i> 1	<i>X</i> 1	<i>X</i> 1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	<i>X</i> 2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
	ı		All-ga	ther	I	I	
Node	Node	Node	Node	Node	,Node	Node	Node
0	_1_	2	3	0	1	2	3
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} X_1^{(1)}$	$X_0^{(2)} X_1^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$	$\sum_{j} X_0^{(j)}$ $\sum_{i} X_1^{(j)}$	$\sum_{j} X_{0}^{(j)} \sum_{i} X_{1}^{(j)}$	$\frac{\sum_{j} X_0^{(j)}}{\sum_{j} X_1^{(j)}}$	$\frac{\sum_{j} X_0^{(j)}}{\sum_{i} X_1^{(j)}}$
$X_{1}^{(0)} X_{2}^{(0)}$	$X_{2}^{(1)}$ $X_{2}^{(1)}$	$X_{2}^{(2)}$ $Y^{(2)}$	$X_2^{(3)} X_2^{(3)}$	$\sum_{j} X_2^{(j)} $ $\sum_{i} X_3^{(j)}$	$\sum_{j} X_2^{(j)}$ $\sum_{i} X_3^{(j)}$	$\sum_{j} X_2^{(j)}$ $\sum_{i} X_3^{(j)}$	$\sum_{j} X_2^{(j)}$ $\sum_{i} X_3^{(j)}$
A_3	3	A 3		educe			

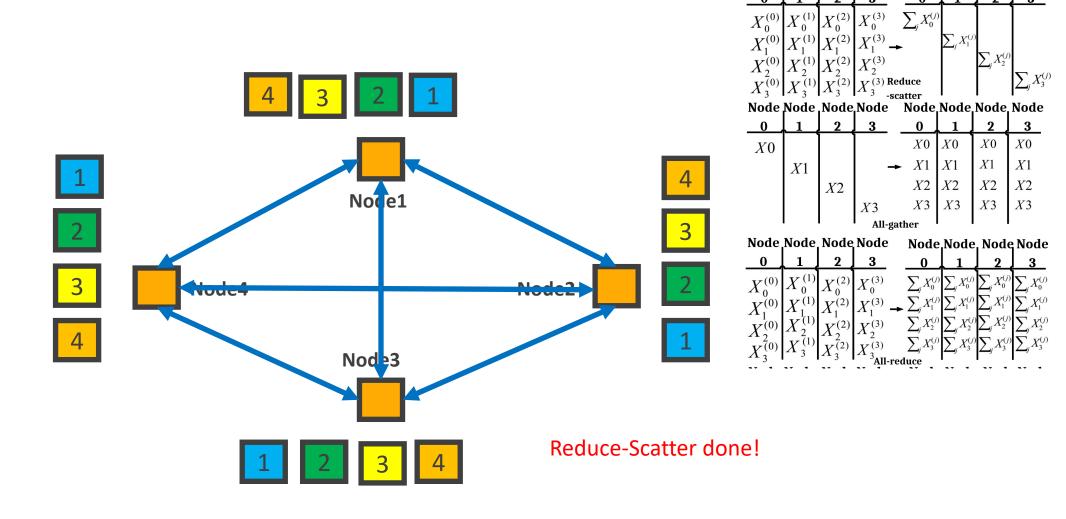
- A ring with N nodes partitions data to N messages
- Collective Communication Flow:


Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3_	0	1	2	3
$X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)}$	$X_{2}^{(1)} \ X_{3}^{(1)}$	$X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ X_3^{(2)}$		catter	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_2^{(j)}$	$\sum_j X_3^{()}$
	Node	Node	Node		Node		
0	1	2	3_	_0_	1	2	3_
X0				X0	X0	X0	X0
	<i>X</i> 1		-	► X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
			All-ga	ather	ı	ı	
Node	Node	Node	Node	Node	,Node	, Node	Node
0	1	2	3	0	1	2	3
$X_0^{(0)}$ $X_1^{(0)}$ $X_2^{(0)}$ $X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)}$ $X_1^{(2)}$ $X_2^{(2)}$ $X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-r	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ educe	$ \begin{array}{l} \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array} $	$\sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$ $\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$

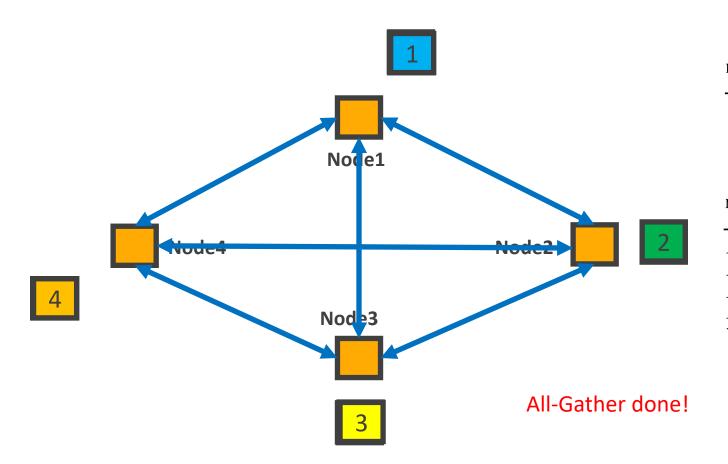
- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

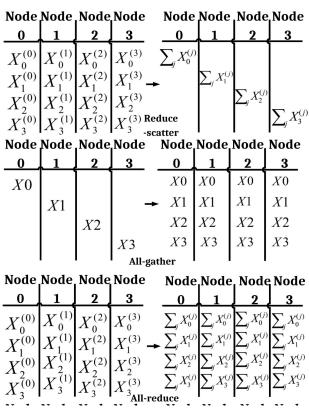

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3_	_0	$\downarrow 1$	2	3
$ \begin{array}{c} X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \end{array} $	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)}$	$X_1^{(3)} - X_2^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_j X_2^{(j)}$	
$X_3^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_{2}^{(3)}$ Re				$\sum_{j} X_3^{C}$
_	Node	Node	Node	catter Node	' Node,	' Node,	ı Node
0	1	2	3_	_ 0	1	2	3_
X0				X0	X0	X0	<i>X</i> 0
	<i>X</i> 1			× X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	<i>X</i> 2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3
		l .	l All-ga	ather	ı	ı	
Node,	Node	Node	Node	Node	,Node	, Node	Node
_ 0	1	2	3	0	1	2	3
$ \begin{array}{c} X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)} \end{array} $	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-re	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ educe	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$	$\sum_{j} X_{0}^{(j)} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$	$\sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)}$


- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

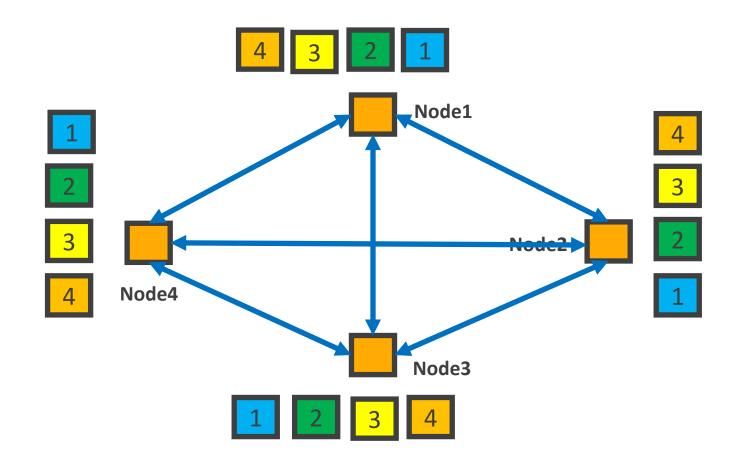

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3	0	1	2	3
$X_0^{(0)} X_1^{(0)} X_2^{(0)}$	$X_0^{(1)} \ X_1^{(1)} \ X^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X^{(2)}$	$ \begin{array}{c} X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \end{array} $	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{i} X_2^{(j)}$	
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_3^{(3)}$ Re	atter			$\sum_{j} X_3^{(j)}$
Node	Node	Node	Node	Node	Node	Node _l	
0	1	2	3_	_0_	1	2	3_
X0				X0	X0	X0	X0
	<i>X</i> 1		→	- X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	<i>X</i> 2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
			All-ga	ther	ı	ı	
Node,	Node	Node	Node	Node	,Node	, Node	Node
0	1	2	3	0	1	2	3
$X_0^{(0)}$ $X_1^{(0)}$ $X_2^{(0)}$ $X_3^{(0)}$	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$	$X_0^{(2)}$ $X_1^{(2)}$ $X_2^{(2)}$ $X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-re	$\sum_{j} X_0^{ij} \sum_{j} X_1^{ij}$ $\sum_{j} X_2^{ij} \sum_{j} X_3^{ij}$ duce	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)} \sum_{j} X_{3}^{(j)}$	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$	$ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

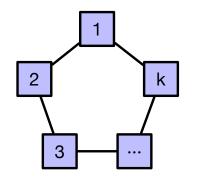

Example: Direct All-Reduce

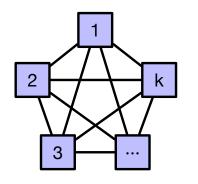


Node Node Node Node


Node Node Node Node

Example: Direct All-Reduce

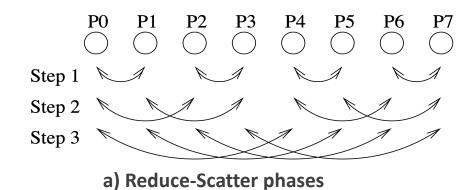


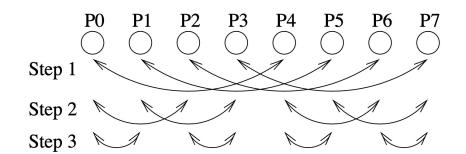

Example: All-to-All



Node	Node	Node	Node	Node	Node	Node	Node
_0	1	2	3	_0_	_1_	2	3_
	$X_0^{(1)}$					$X_2^{(0)}$	
	$X_1^{(1)}$			$X_0^{(1)}$	$X_1^{(1)}$	$X_{2}^{(1)}$	$X_3^{(1)}$
$X_2^{(0)}$	$X_2^{(1)}$	$X_2^{(2)}$	$X_2^{(3)}$	$X_0^{(2)}$	$X_1^{(2)}$	$X_2^{(2)}$	$X_3^{(2)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_3^{(3)}$ All-t	$X_0^{(3)}$	$X_1^{(3)}$	$X_2^{(3)}$	$X_3^{(3)}$

Topology-aware Collectives




(a) Ring(k)

(b) FullyConnected(k)

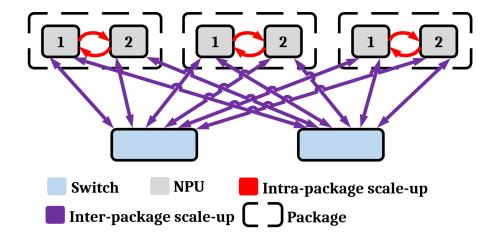
(b) Switch(k)

Topology Building Block	Topology-aware Collective Algorithm
Ring	Ring
FullyConnected	Direct
Switch	HalvingDoubling

b) All-gather phases

HalvingDoubling All-Reduce

Collectives on Sophisticated Training Platforms


Torus 3D Similar to Google TPU

Hierarchical all-reduce:

- Reduce-scatter within package
- All-reduce across rows
- All-reduce across columns
- All-gather within package

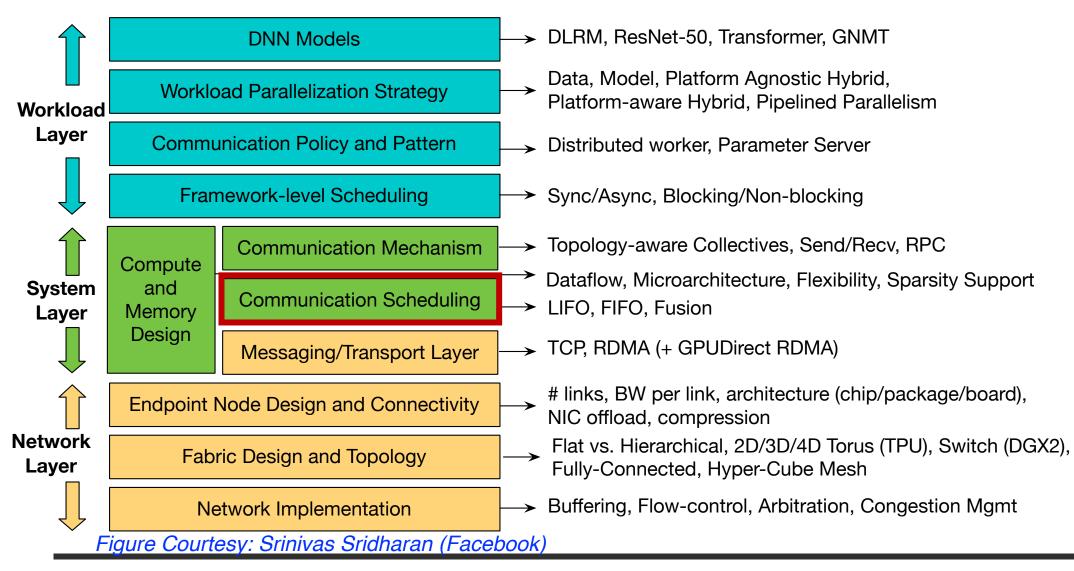
All-To-All

Similar to NVIDIA DGX2

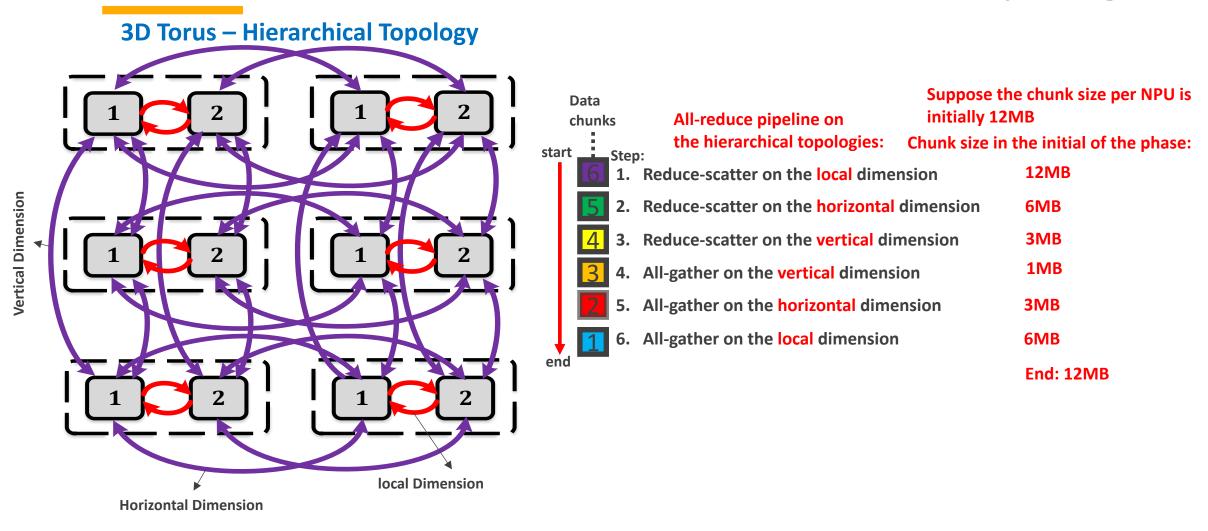
Hierarchical all-reduce:

- Reduce-scatter within package
- All-reduce across switch
- All-gather within package

Heterogeneous Bandwidth

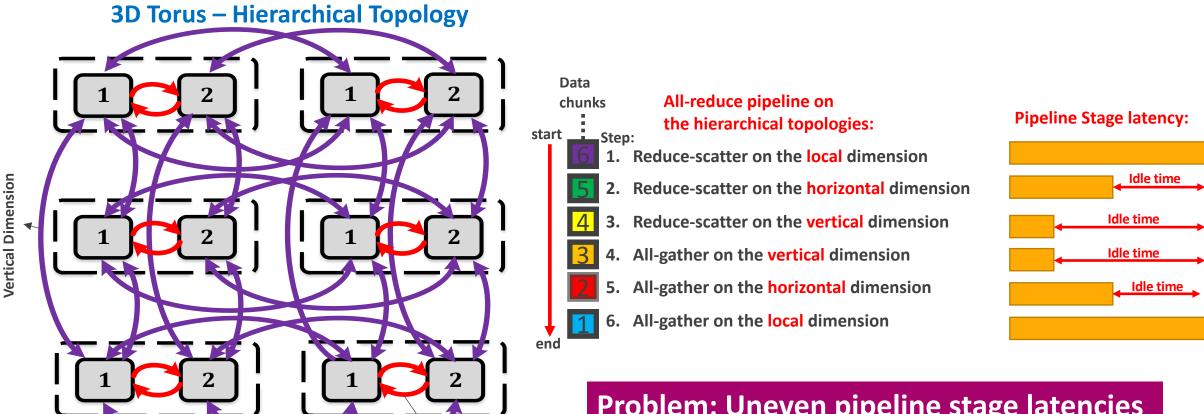

Multi-phase Collectives

Intra-package scale-up



Inter-package scale-up [

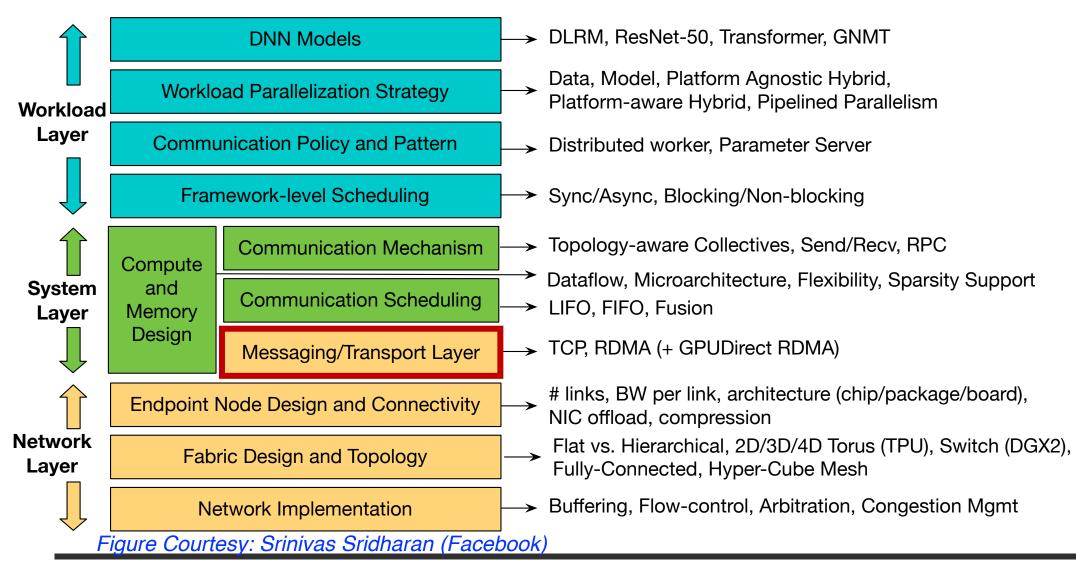
Distributed Training Stack



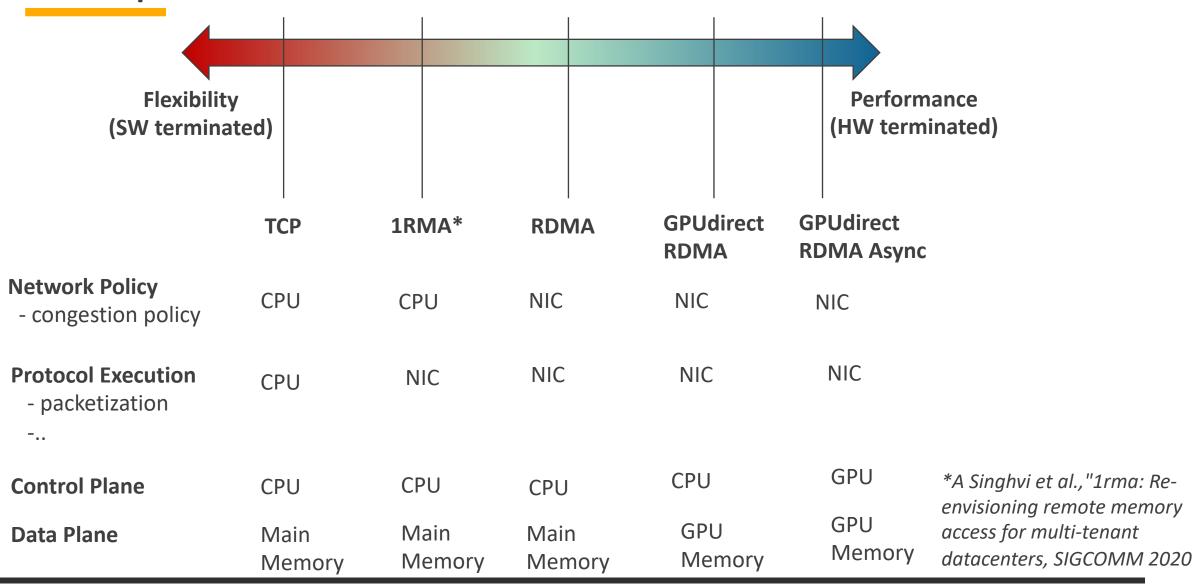
Baseline All-Reduce on the Hierarchical Topologies

S. Rashidi et al., "Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models". ISCA 2022.

Baseline All-Reduce on the Hierarchical Topologies


Problem: Uneven pipeline stage latencies that causes network underutilization

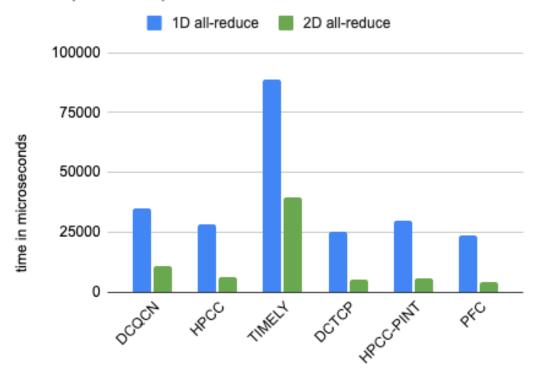
S. Rashidi et al., "Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models". ISCA 2022.


Horizontal Dimension

local Dimension

Distributed Training Stack

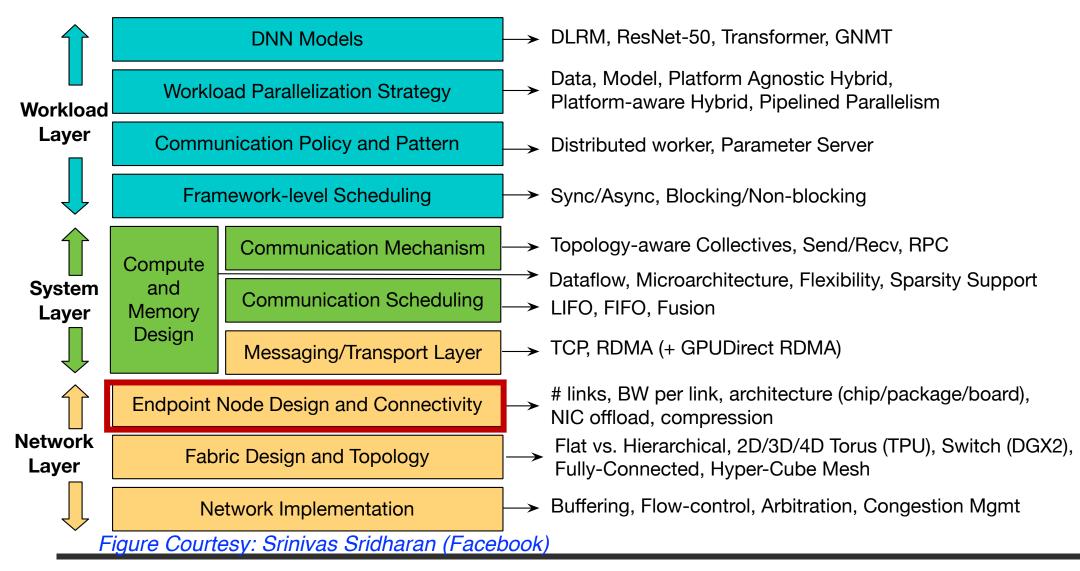
Transport Protocols

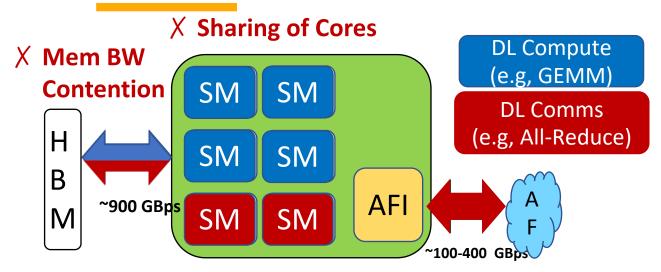

Congestion Control

- Enforcement mechanism
 - Window-based vs Rate-based
- What metrics to use?
 - Network telemetry vs RTT

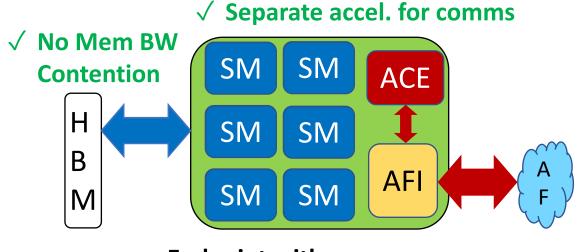
Research Questions:

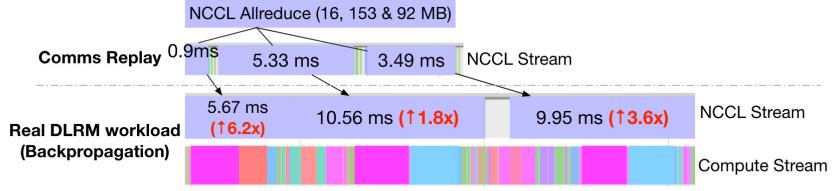
- Impact on training time
- What is the best policy when having irregular parallelization strategy


1D all-reduce and 2D all-reduce completion time (128 MB)

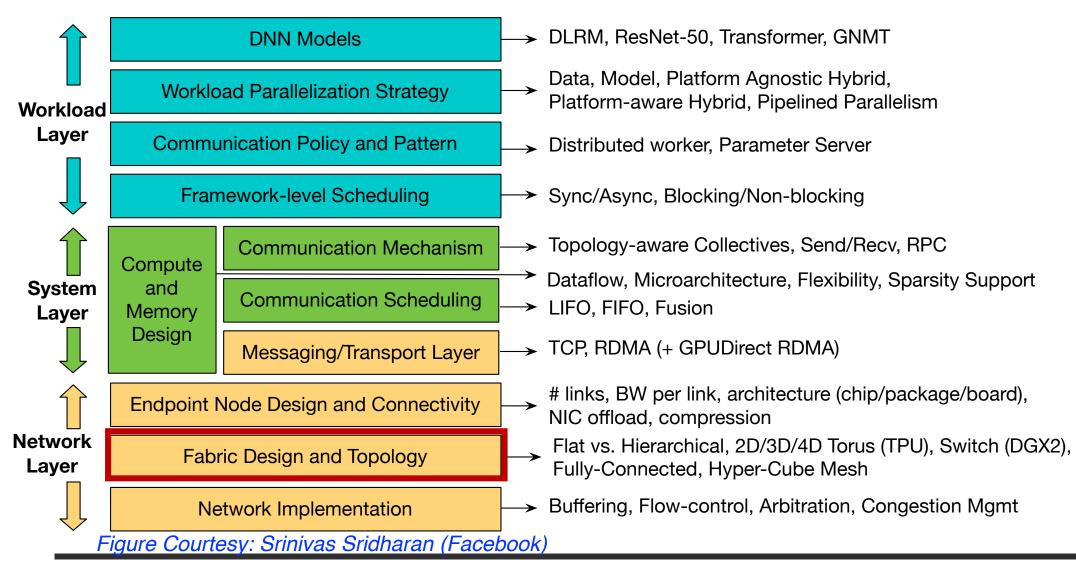

T Khan, S Rashidi, S Sridharan, P Shurpali, A Akella and T Krishna, "Impact of RoCE Congestion Control Policies on Distributed Training of DNNs"

In Proceedings of the 29th International Symposium on High-Performance
Interconnects (Hotl), Aug 2022.


Distributed Training Stack

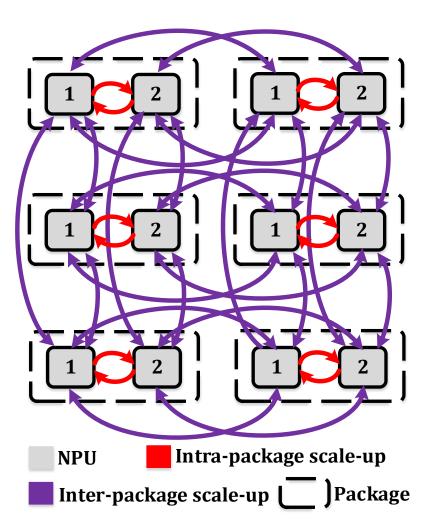

Resource Contention at End-point

Endpoint with Accelerator Collectives Engine (ACE)



Alternate approach: offload to switch (e.g., ISCA 2020)

(b) Impact of compute-comms overlap on a real-world production-class DLRM workload

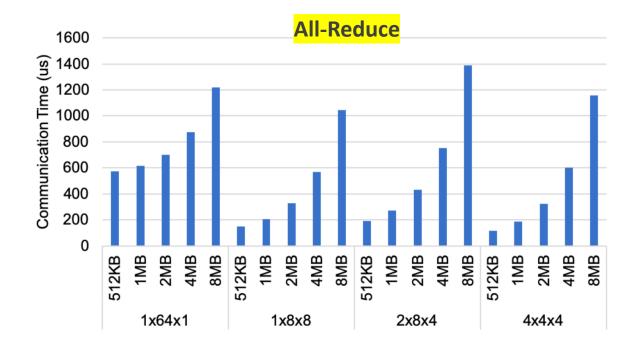

S. Rashidi et al., "Enabling Compute-Communication Overlap in Distributed Deep Learning Training Platforms". ISCA 2021

Distributed Training Stack

Target System

Torus 3D

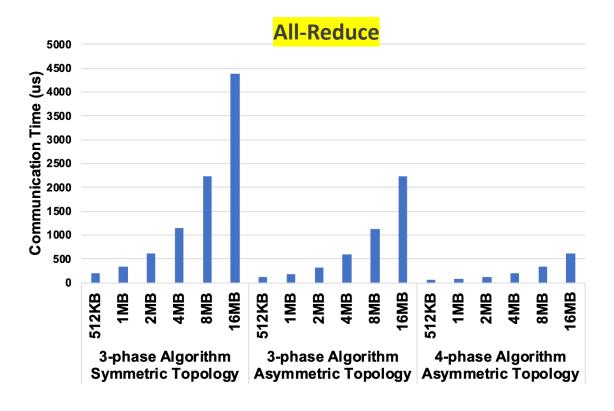
X * Y* Z dimension


X= cores within a package

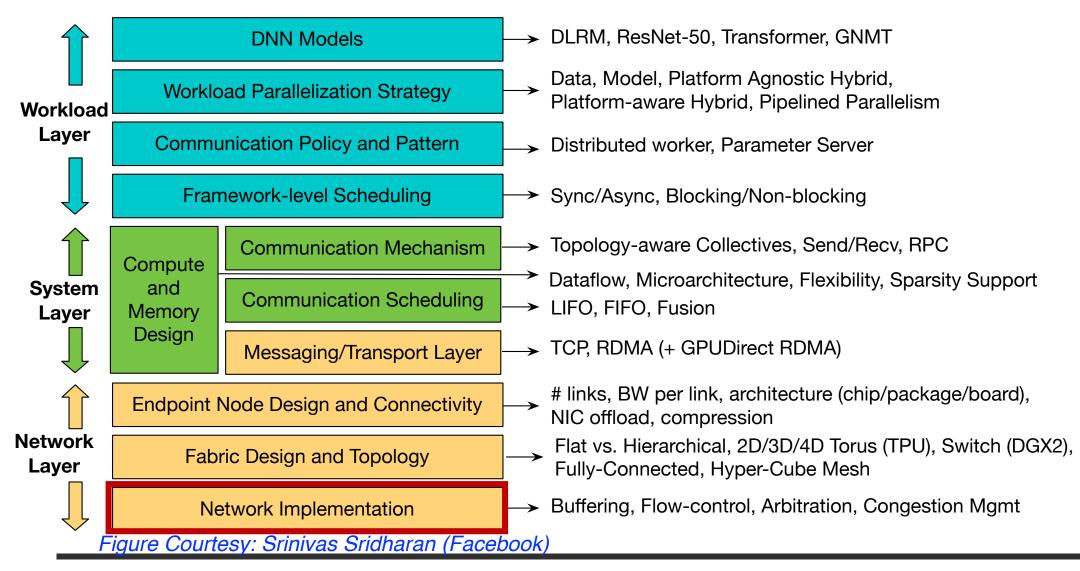
Y= packages in horizonal dimension

Z= packages in vertical dimension

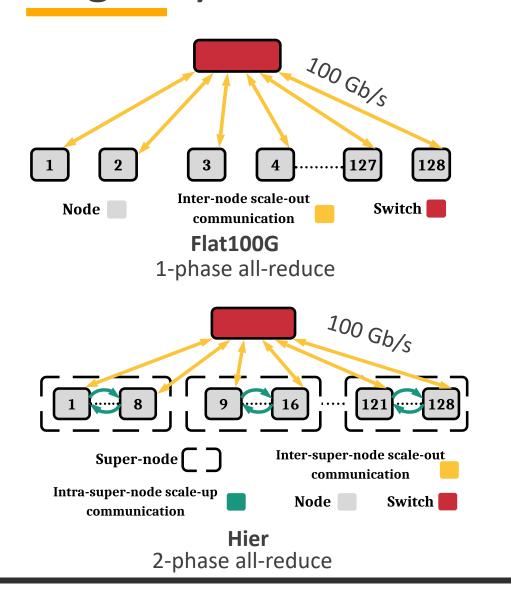
Impact of 1D/2D/3D Torus

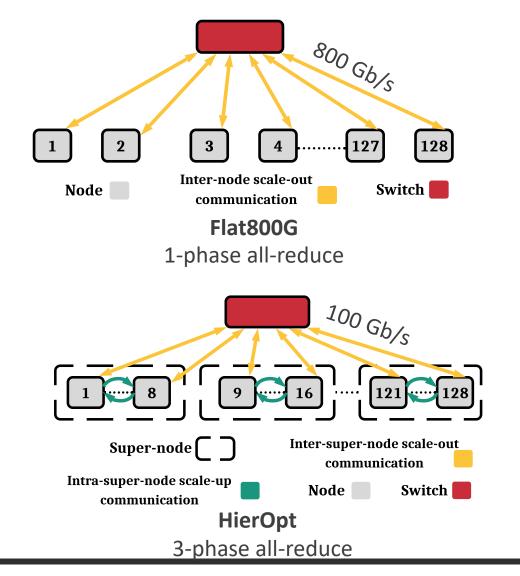

- Adding a dimension decreases the number of steps per collective.
 - For example, going from 1X64X1 to 1X8X8.
- Adding a dimension might increase amount of data each node sends out (depends on the algorithm).
 - For example, going from 1X8X8 to 2X8X4.
- Hence, choosing a topology is a tradeoff between the above effects.

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms", ISPASS 2020


Impact of Asymmetric Hierarchical Topology

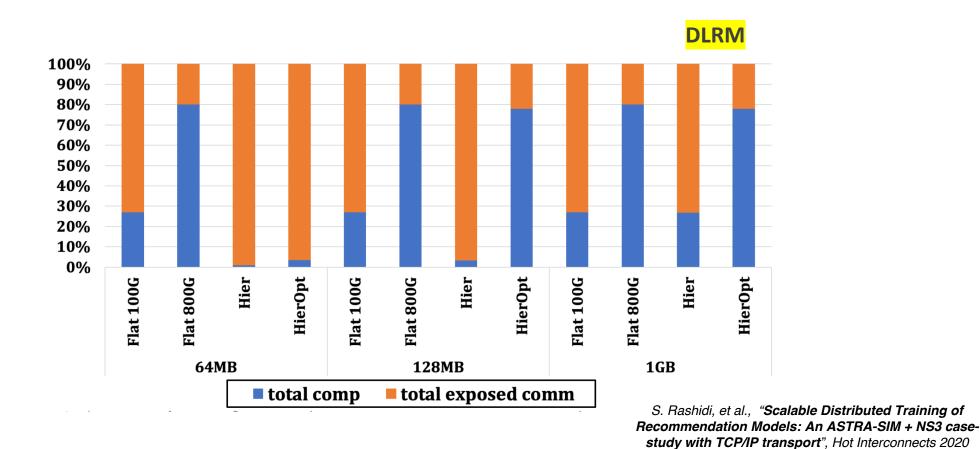
- Having higher intra-package BW improves the performance.
- We can further improve performance by changing the algorithm to leverage this asymmetric BW.

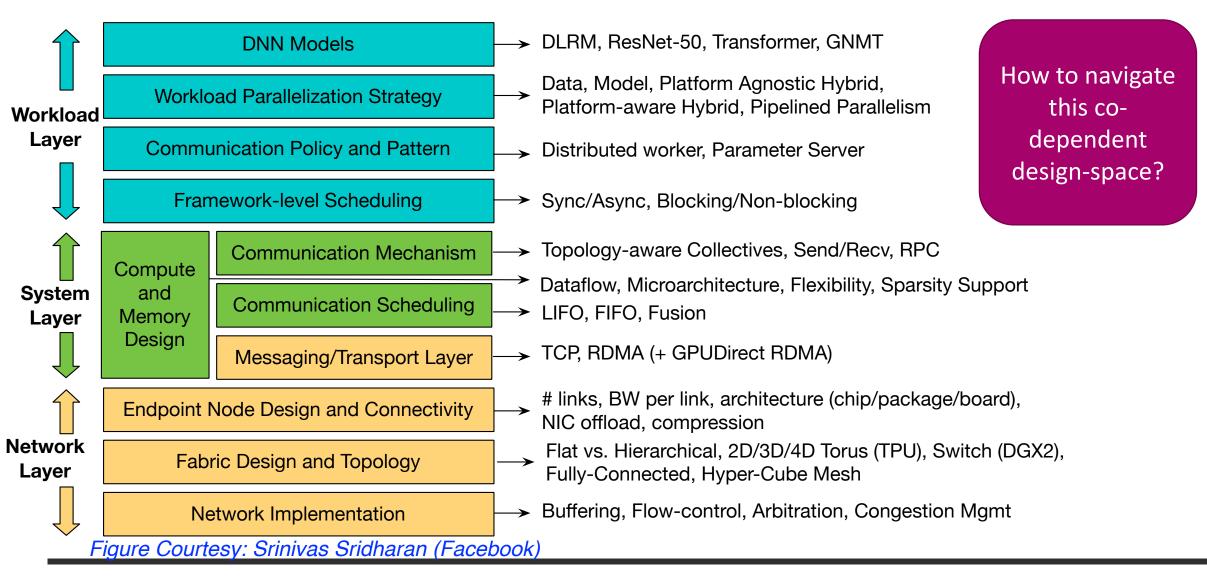



S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms", ISPASS 2020

Distributed Training Stack

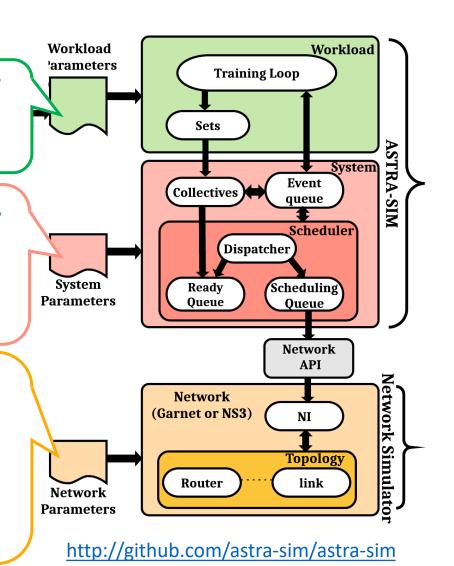
Target Systems

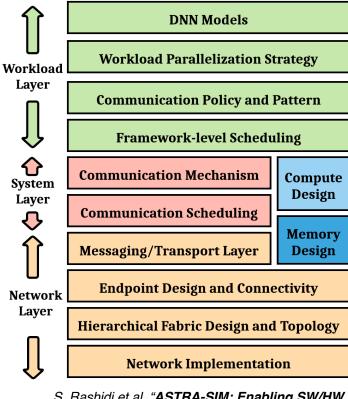



Effect of Size of Switch Buffer

Observations:

• Flat vs. Hierarch different Sensitivity to global switch size


Distributed Training Stack


Introducing ASTRA-sim

STRA*

- ✓ Released
- In progress
- ✓ Supports Data-Parallel, Model-Parallel, Hybrid-Parallel training loops
- ✓ Extensible to more training loops
 - Graph-based input from PyTorch
- ✓ Ring based, Tree-based, AlltoAll based, and multi-phase collectives
- √ Variety of scheduling policies
- ✓ Compute times fed via offline system measurements or compute simulator
- ✓ Various topologies, flow-control, link bandwidth, congestion control
- ✓ Plug-and-play options
 - ✓ Analytical (roofline)
 - Analytical with congestion
 - ✓ Garnet (credit-based)
 - > NS3 (TCP, RDMA)

DL Training Co-Design Stack

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms", ISPASS 2020

S. Rashidi, et al., "Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 casestudy with TCP/IP transport", Hot Interconnects 2020

What Does ASTRA-sim Report?

ASTRA-sim Reports:

- 1. End-to-end training time.
- 2. Total communication time for each communication operation.
- 3. The amount of **exposed communication** for each communication operation.
- 4. Total Exposed communication and total computation.
- More detailed stats such as average message latency per each hierarchical collective phase.

Network Backend Specific Reports (Depends on the network backend type):

- 1. Network BW utilization
- Communication protocol stats, such as packet drops, # of retransmissions, etc.
- 3. Network switch buffer usage
- 4. ...

Summary and Takeaways

- Large Model distributed training is an ongoing open-research area
- Many emerging supercomputing systems being designed specifically for this problem!
 - Cerebras CS2
 - Tesla Dojo
 - NVIDIA DGX + Mellanox SHARP switches
 - Intel Habana
 - IBM Blueconnect
 - •
- Co-design of algorithm and system offers high opportunities for speedup and efficiency

Time (PDT)	Topic	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 – 4:00	Coffee Break	
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded