= = EREY
https://astra-sim.github.io https://github.com/mlcommons/chakra

ASTRA-sim and Chakra Tutorial:
LWiki and Validation

Will Won
Ph.D. Candidate
School of CS, Georgia Institute of Technology
william.won@gatech.edu

ASTRA-sim Tutorial
MICRO 2024
Nov 3, 2024

https://astra-sim.github.io/
https://github.com/mlcommons/chakra

ASTRA-sim Wiki Page

* Main Documentation of the ASTRA-sim Framework
* https://astra-sim.github.io/astra-sim-docs/index.html

A ASTRA-sim

@ / Welcome to ASTRA-sim’s documentation!

Getting Started
Workload Layer
System Layer

Network Backend

Compute Backend

Remote Memory Backend

Validation

Here is a concise visual summary of our simulator:

z
i
g7
WIS-VALLSV
Y

Compute
APL

e
On-chip SRAM

Compute Array h
‘ompute

View page source

Welcome to ASTRA-sim's documentation!

ASTRA-sim is a distributed machine learning system simulator. It enables the systematic study of
challenges in modern deep learning systems, allowing for the exploration of bottlenecks and the
development of efficient methodologies for large DNN models across diverse future platforms.

DNN Models]

Wor Workload Parallelization Strategy]

z

I
I
I Communication Policy and Pattern I
I

Framework-level Scheduling |

m Communication Mechanism | | Compute
Design

p—— |

I Endpoint Design and Connectivity]

;OCZJ§

H

=3

Network

Layer
I Hierarchical Fabric Design and Topology]

I Network Implementation |

Compute
8. SCALE-SIM)

Y Y
Network Simulator Mem Simulator Compute Simulator

ASTRA-sim Tutorial @ MICRO 2024

Will Won | School of CS | Georgia Institute of Technology

Nov 3, 2024

ASTRA-sim Wiki Page: Getting Started

ASTRA-sim

/ Getting Started

View page source

B Getting Started Getting Started

Dependencies Setup

Build ASTRA-sim » Dependencies Setup
Run ASTRA-sim o Debian-Based Linux Distributions
ASTRA-sim Output o macOS using homebrew

o Windows

Workload Layer
System Layer ¢ Build ASTRA-sim

Network Backend o Clone Repository

Compute Backend o Build with Docker (Optional)
o Compile Program

Remote Memory Backend

Validation ¢ Run ASTRA-sim

o Argument ${WORKLOAD_CONFIG}

= Using Chakra Execution Trace
= Using Execution Trace Converter (et_converter)
= Enable Communicator Groups

o Argument ${SYSTEM_CONFIG}
o Argument ${NETWORK_CONFIG}

= Analytical Network Config
= Garnet Network Config
= NS3 Network Config

= Physical Topology
= Logical Topology

o Argument ${REMOTE_MEMORY_CONFIG}
= Analytical Remote Memory Config

o ASTRA-sim Output

Q@ Previous Next ©

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology Nov 3, 2024

ASTRA-sim Wiki Page: Workload

A ASTRA-sim
@ / Workload Layer / Overview View page source
Getting Started Ovel'VieW
& Workload Layer
8 Overview ASTRA-Sim Workload Layer Overview
| ASTRA-Sim Workload Layer Overview
Graph Input
System Layer S s
D0 AR
Network Backend |
chwork Backen « Type: Special 1 *, \\
Compute Backend Special . -Comm Groupinfo ’
Remote Memory Backend " TEOR e

Workload Layer
 Execution graph parsing
| © Run different ops on NPUs

« Type: Mem Load

]

Validati m :
alidation Me e «Tensor Size: AMiB | B
————— e 4 Q

‘ N
I 1

' 1

! 1

} 1

! 1

-1 1 1

- |eiD:2 : p- :

- « Type: Compute i System Layer :

Comp « Compute Time i | + Collective communication !
- Number of FP Ops : L Data chunk scheduling :

: :

U |

' 1

x 1

! 1

\ 7

r N\

___ *Tensor Dimensions =~ Network Layer
R * Network topology)
. » Network latency, bandwidth
7 «Type: Collective Comm .
Comm Mem Comm \ + Comm Type: AllGather T
'\ +Comm Group ID: 0 | ‘

\ "Comm Size:8MiB | /| . Total execution time
\+Comm Time 7 I/ |« Network utilization

The workload layer in ASTRA-Sim plays a pivotal role, enabling users to define and simulate their
desired DNN models, parallelization strategies, and training loops efficiently. The transition from
ASTRA-Sim 1.0 to 2.0 brought forth significant advancements, enhancing the layer’s functionality
and operational efficiency.

Evolution from ASTRA-Sim 1.0 to 2.0

Initially, ASTRA-Sim 1.0 laid the groundwork by allowing users to articulate target DNN models,
parallelization strategies, and training loops. With the evolution to ASTRA-Sim 2.0, the platform
adopted Execution Trace (ET) from Chakra, leveraging a Directed Acyclic Graph (DAG) format for
more streamlined and structured processing.

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology Nov 3, 2024

ASTRA-sim Wiki Page: System

A ASTRA-sim

S]

ASTRA-sim Tutorial @ MICRO 2024

Getting Started
Workload Layer

System Layer
Collective Scheduler
Collective Implementation
Input Files for Collective API

Network Backend

Compute Backend

Remote Memory Backend

Validation

@ / System Layer / Collective Scheduler View page source

Collective Scheduler

stroam_pointer(0] | run

StreamBaseline
active_Streams[0]

e ® ® ® @
Esaaa -chmhn ‘advance Ansert() =EE erase() sveam_id: &
e i e ———] t et t —-_—

shase:0

.m..n (| active_Streams{1] . .
" ssanl) delete
my_curteet | EBEEE I @ " notify_stream _finished()
it} = X
@ ¥

stream_peieter(1) runming_streamsi1)

The system layer has a collective scheduler which schedules and dispatches collectives. Even if the
dependencies for multiple non-dependent collectives have been resolved in the workload layer
(such as in a Data Parallel case), a single NPU cannot issue dozens of collectives at once, due to
hardware limits. Core to the scheduler is a set of queues called active_Streanms .

Each queue holds streamBaseline objects, which are depicted at the top right corner of the image.
A streamBaseline object represents a stream (i.e. collective), which consists of multiple collective
phases. The variable phases_to_go is a queue holding these phases. The pointer my_current_phase
points to the phase currently being executed.

For each stream, the function proceed_to_next_vnet_baseline is critical in advancing the collective
phases and moving the stream object between one queue to another. This function is called in the
following possible cases:

1. When a stream has been removed from ready_list and is about to be inserted into
active_Streams for the first time.

2. When a stream has finished one phase and is ready to wait for the next phase.

3. When a stream has finished its last phase.

Will Won | School of CS | Georgia Institute of Technology

Nov 3, 2024

ASTRA-sim Wiki Page: Network

A Analytical Network

/ Installation View page source
Installation
B Installation
Install Dependencies This page explains how to compile an analytical network simulator as a standalone binary.

Clone Repository

This page explains how to use the analytical network simulator as a standalone program. If you

Compile Analytical Network
Simulator

Run Simulation want to use the analytical network simulator as a backend to the ASTRA-sim, please refer to
Input Format this link.
Frequently Asked Questions

¢ Install Dependencies

o macOS
o Debian-based Linux

¢ Clone Repository
o Compile Analytical Network Simulator

o Overview
o Additional Options

= Build in Debug Mode
= Compilation Target

e Run Simulation

o Congestion_Unaware Simulation
o Congestion_Aware Simulation

Q@ Previous Next ©

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology

Nov 3,2024

Chakra Wiki Page

* Main documentation of the MLCommons/Chakra Project
* https://github.com/miIcommons/chakra/wiki

Home

Taekyung Heo edited this page on Nov 18, 2023 - 6 revisions

Chakra Project Wiki

Mission
Advancing performance benchmarking and co-design in Al through standardized execution traces.

Overview

Chakra offers an innovative graph-based representation for Al/ML workload specifications, known as Execution Traces
(ETs). It stands apart from conventional Al/ML frameworks by focusing on replay benchmarks, simulators, and emulators,
prioritizing agile performance modeling and adaptable methodologies.

Purpose

Chakra's purpose encompasses:

Chakra Wiki Page: Installation

Installation Guide Execution Trace Visualizer (chakra_visualizer)

Joongun Park edited this page on Sep 18 - 4 revisions X .
This tool visualizes execution traces in various formats. Here is an example command:

Chakra User Guide $ chakra_visualizer \
——input_filename /path/to/chakra_et
o ——output_filename /path/to/output.[graphml|pdf|dot]
Installation | pdf |

Step 1: Set up a Virtual Environment Execution Trace Jsonizer (chakra_jsonizer)

It's advisable to create a virtual environment using Python 3.10.2. . .
Y Provides a readable JSON format of execution traces:

Create a virtual environment

python3 -m venv chakra_env $ chakra_jsonizer \

——input_filename /path/to/chakra_et \
——output_filename /path/to/output_json

Activate the virtual environment
source chakra_env/bin/activate

Step 2: Install Chakra Timeline Visualizer (chakra_timeline_visualizer)

With the virtual environment activated, install the Chakra package using pip.)
Visualizes the execution timeline of traces. This tool serves as a reference implementation for visualizing the simulation of

AT T N —— Chakra traces. After simulating Chakra traces, you can visualize the timeline of operator executions. Update the simulator to
pip install . present when operators are issued and completed. Below is the format needed:

Install latest from GitHub
pip install https://github.com/mlcommons/chakra/archive/refs/heads/main.zip issue, <dummy_str>=npu_id, <dummy_str>=curr_cycle, <dummy_str>=node_id, <dummy_str>=node_name LD

BTns tallspect ticRrevis TonRrron RCItHD callback, <dummy_str>=npu_id, <dummy_str>=curr_cycle, <dummy_str>=node_id, <dummy_str>=node_name

pip install https://github.com/mlcommons/chakra/archive/ae7c671db702eb1384015bb2618dc753eed787f2.zip e

Chakra Wiki Page: Trace Collection

Chakra Execution Trace Collection - A Comprehensive Guide on Merging
PyTorch and Kineto Traces

Joongun Park edited this page on Sep 24 - 30 revisions

Authors: Saeed Rashidi, Joongun Park, Abhilash Kolluri, and Taekyung Heo

1. Introduction

This document outlines the process of collecting and simulating Chakra execution traces for performance projection and
design space exploration using a simulator. This document covers the collection of PyTorch execution traces (ET) and
Kineto traces, their linker, and the subsequent conversion into Chakra execution traces, a standardized format that
encapsulates both CPU and GPU operation information.

2. Overview of Trace Collection and Simulation Methodology

Chakra execution traces and the related toolchains enable the simulation of execution traces on a simulator. The figure
below illustrates how the end-to-end flow works. The process begins by collecting traces from a PyTorch model. There are
two types of traces collected from PyTorch: PyTorch ET and Kineto trace. We need to collect two different types of traces
because each trace type covers aspects that the other cannot. While PyTorch ETs focus on CPU operators with explicit
dependencies between them, Kineto traces encode GPU operators with their start and end times. To understand the
differences between further, please refer to the table below, which highlights their differences and roles. After collecting
these traces, we use a merger tool (chakra_trace_link) to merge them into a single execution trace, known as PyTorch
ET+. This format essentially follows the PyTorch ET schema but also encodes GPU operators and their dependencies.
Subsequently, these traces are converted into the Chakra schema using the converter (chakra_converter). Finally, you
can use any Chakra-compatible simulator, with ASTRA-sim currently serving as a reference implementation.

Validation

* Validation effort is actively underway
* https://astra-sim.github.io/astra-sim-docs/validation/validation.html

e Currently validated at the collective communication level
* In progress: end-to-end workload-level validation

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology

Nov 3,2024

Validation Process

* Run the real system measurement
 Measure: Practical network bandwidth and endpoint delay

e Run the ASTRA-sim simulation with the measured value

e Compare the result

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology

Nov 3,2024

Validation Example: 2-GPU HPE Cluster

* Simplest validation setup

Real System (NCCL) vs ASTRA-SIM [HPE ProLiant Gen 10, 2 GPUs]

== Real System (NCCL) == ASTRA-SIM

25000
20000
@
2
= 15000
=
Q
® 10000
L=
&
s 5000
L=
c
ul 0
I I IS IS R IS ST AP S St I I I IR S A S © O
D U NP S R I R R I R e
N SR N SN S PG ANIC X DR AR RO R S
NI R A NP L\ g
NI G SRS

Collective size (Bytes)

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology

geomean error: 11.4%

Nov 3,2024

Validation Example: 8-GPU HPE Cluster

Real System (NCCL) vs ASTRA-SIM [HPE ProLiant Gen 10, 8 GPUs]

== Real System (NCCL) == ASTRA-SIM

8000
6000
w
2
)
S 4000
©
-
©
& 2000
e
=
i 0
I I T T T T T T T - A SR S N T S I T I I, T Y
AR U A R I S P R R P R A i R AR
A N R R SR G SR I AN R AR Gl
BT AR G A

Collective size (Bytes)

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology

geomean error: 2.8%

Nov 3,2024

L
Validation Example: H100 System

* Measured BW: 741.34 GB/s (82.37%)
* Nominal BW: 900 GB/s

HGX-H100: 8 GPUs

== Hardware == ASTRA-SIim Analytical

12500
10000 -
7500 -
_ 1
g 1
2 5000 4
cC
w -
©
— 1
2500 —+
o 4+ttt t t trt>
@ O A > D O A D O o D O A > ® O D> D O A > D O A D
R AN T R IR A R N M A O N R AN S S DR - SR M-Sl A
N & A D P A 2 AV W AN K D S
NS A I I) S AR - P (. S - A RS
AN S S N A SR g < S\
O of & o L8
DINIRRNAN

Collectives size (Bytes)

geomean error: 9.69%

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology Nov 3, 2024

Validation Example: TPUv3 Cluster
* 32-TPU 2D Torus System

TPU V3-32 4X8 Mesh vs ASTRA-Sim 2d torus (normalized)

== TPU-HW == ASTRA-SIM

0.75
<)
B
£ 050
£
o
<
fry
g 025
[
-
0.00
? VD @A A D @ D NS b O D D O O ¥ oD oD R DD A B DD A N B
N ARSI M I MG SRS S SN SR A SN S A N SN s M AL O S LIRS S e SR S MR
6H7 AN 7 o7 A7 AN ANV DY AN AR B O AN Y N QY &7 BT D S AN o QY A7 N7 (DY 407 87 (WO NT Y
O A o 07 A B L0 A7 AN o A S © W A7 N N AV @ A0 @ 80 RN A B A0
CCENEEN T A “ O AV A0Y O D7 QY AN R0 87 AW (@Y & AN N5 O o O & DY A N
9P 9 RN O SR S P R MR PRI S AN S
ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology Nov 3, 2024

Work In Progress

e Wiki is continuously being upgraded

e e.g., adding documentations for the API specs
e adding more validation results

* Validation and real system modeling
* Plan: measure practical efficiency and endpoint delay
* and implement a flag to turn this efficiency/delay on
* e.g., ./astra-sim —system=H100

ASTRA-sim Tutorial @ MICRO 2024 Will Won | School of CS | Georgia Institute of Technology

Nov 3,2024

	Slide 1
	Slide 2: ASTRA-sim Tutorial - Agenda
	Slide 3: ASTRA-sim Wiki Page
	Slide 4: ASTRA-sim Wiki Page: Getting Started
	Slide 5: ASTRA-sim Wiki Page: Workload
	Slide 6: ASTRA-sim Wiki Page: System
	Slide 7: ASTRA-sim Wiki Page: Network
	Slide 8: Chakra Wiki Page
	Slide 9: Chakra Wiki Page: Installation
	Slide 10: Chakra Wiki Page: Trace Collection
	Slide 11: Validation
	Slide 12: Validation Process
	Slide 13: Validation Example: 2-GPU HPE Cluster
	Slide 14: Validation Example: 8-GPU HPE Cluster
	Slide 15: Validation Example: H100 System
	Slide 16: Validation Example: TPUv3 Cluster
	Slide 17: Work In Progress

