
Chakra: AI Workload Twin for Benchmarking and Co-design
Taekyung Heo
Software Engineer @ NVIDIA

AI SW/HW Co-design Requirements

Replay: Reproduce AI workload on actual hardware1

Analysis: Identify performance bottlenecks and opportunity 3

Simulation: Capture exact behavior for future system co-design2

Sharing: Obfuscate IP-sensitive details of customer models 4

Chakra Execution Trace

● Extensible and standardized graph format to represent AI workloads

○ Nodes: primitive operators and tensor objects with attributes and timing

○ Edges: data and control dependency

● Benefits

○ Isolate comms and compute operators

○ Graph transformations to obscure sensitive IP

○ Operator, dependencies, and timing for replay, simulation, and analysis

○ Flexible to represent both workloads and collective implementations

Graph is the Representation!

MLCommons

Chakra Ecosystem

AI workloads
(production)

Chakra w/ timing

AI workloads
(production)

AI workloads
(production)

Future systems co-
design

Current systems
benchmarking

Converter

Synthesizer

Customer (proprietary)

OSS simulators
(e.g. ASTRA-Sim)

Internal simulators
and emulators

Internal systems

Vendor (proprietary)

PARAM Replay
Chakra

Analysis

Visualizers

Representative
(Obfuscated) Traces

Internal tools and
benchmarks

Chakra Execution Trace Schema
https://github.com/mlcommons/chakra/blob/main/schema/protobuf/et_def.proto

● Pre-transformed: original model
● Post-transformed: optimized graph (may or may not be platform dependent)
● Profiled: graph executed on a specific platform

○ Chakra ET today for PT eager mode

AI model Capture EG
Platform
agnostic

transforms

Platform
dependent
transforms

Code Gen Execution

Pre-transformed Post-transformed* Post-transformed** Profiled

Chakra Traces: Source and Intent

Chakra Execution Trace Collection
Chakra Host Execution Trace

(PyTorch Execution Trace)

from torch.profiler import _ExperimentalConfig,

ExecutionTraceObserver

et = ExecutionTraceObserver()

et.register_callback("pytorch_et.json")

et.start()

...

et.stop()

et.unregister_callback()

Chakra Device Execution Trace
(Kineto Trace)

import torch

def trace_handler(prof):

prof.export_chrome_trace("./kineto_trace.json")

def main():

with torch.profiler.profile(

activities=[

torch.profiler.ProfilerActivity.CPU,

torch.profiler.ProfilerActivity.CUDA,

],

schedule=torch.profiler.schedule(

wait=0,

warmup=10,

active=1),

record_shapes=True,

on_trace_ready=trace_handler,

) as prof:

...

prof.step()

Chakra Execution Trace Collection
https://github.com/mlcommons/chakra/wiki/Chakra-Execution-Trace-Collection-%E2%80%90-A-Comprehensive-Guide-on-Merging-PyTorch-and-Kineto-Traces

Chakra Execution Trace Collection
Chakra Host Execution Trace

Chakra Execution Trace Collection

{
"schema": "1.0.2-chakra.0.0.4", "pid": 836680, "time": "2023-10-22 19:26:48", "start_ts": 927411725,
"nodes": [

{
"id": 2, "name": "[pytorch|profiler|execution_trace|thread]", "ctrl_deps": 1,
"inputs": {"values": [], "shapes": [], "types": []},
"outputs": {"values": [], "shapes": [], "types": []},
"attributes": [{"name": "rf_id", "type": "uint64", "value": 0}, {"name": "fw_parent", "type": "uint64", "value": 0},

{"name": "seq_id", "type": "int64", "value": -1}, {"name": "scope", "type": "uint64", "value": 7}, {"name": "tid", "type":
"uint64", "value": 1}, {"name": "fw_tid", "type": "uint64", "value": 0}, {"name": "op_schema", "type": "string", "value": ""}]

},
…

Global Metadata

Per-node Info

Chakra Host Execution Trace

Chakra Execution Trace Collection
Chakra Device Execution Trace

Chakra Execution Trace Types

Chakra Host Execution Trace
(PyTorch Execution Trace)

Chakra Device Execution Trace

(Kineto Trace)

Encoded Operators CPU CPU & GPU

Encoded Dependencies
Control dependencies

Data dependencies
No explicit dependencies

Encoded Metadata Input / output values, shapes, types Duration, GPU kernel information

Missing Metadata Duration, GPU kernel information Input / output values, shapes, types

Chakra Execution Trace Types

Chakra Host Execution Trace
(PyTorch Execution Trace)

Chakra Device ExecutionTrace
(Kineto Trace)

Chakra Execution Trace Types
Understanding Different Types of Dependencies​

Chakra Execution Trace Types

Chakra Host
Execution Trace

(PyTorch Execution
Trace)

Chakra Device
Execution Trace
(Kineto Trace)

Chakra Execution Trace Postprocessing Steps​

Trace Merger Internals

● Determine dependencies considering
○ Kineto arrow (CPU ops to GPU ops)

CPU OP

GPU
OP1

GPU
OP2

CPU

GPU

Trace Merger Internals

● Determine dependencies considering
○ Kineto arrow (CPU ops to GPU ops)
○ Time window analysis

start=1, end=5

start=2, end=4

Time

Trace Merger Internals

● Determine dependencies considering
○ Kineto arrow (CPU ops to GPU ops)
○ Time window analysis
○ Inter-thread dependency

OP 1

OP2

OP3Thread 1

Thread 2

Trace Merger Internals

● Determine dependencies considering
○ Kineto arrow (CPU ops to GPU ops)
○ Time window analysis
○ Inter-thread dependency
○ Intra-stream dependency

OP1 OP2 OP3GPU Stream N

…

Trace Merger Internals

TS=1 TS=2 TS=3

Sort with time stamp (Kineto)

ID=1 ID=2 ID=3

Sort with Ops ID (Execution Trace Observer)

Trace Merger Internals

TS=1 TS=2 TS=3

ID=1 ID=2 ID=3

Match with operation name

Pattern matching

Trace Merger Internals

ts=1 ts=2 ts=3

id=1 id=2 id=3

Merge into ChakraHDT ET

● The ChakraHDT ET node has unique operation id, timestamp, duration,
dependencies, etc.

Chakra Execution Trace Postprocessing Steps​

Chakra Converter Internals

● Convert Control dependencies into
Data dependencies through Depth-
First-Search

ID=1

ID=2

ID=3 ID=6 ID=7 ID=8

ID=4 ID=5

Control dependency

Chakra Converter Internals

● Convert Control dependencies into
Data dependencies through Depth-
First-Search

ID=1

ID=2

ID=3 ID=6 ID=7 ID=8

ID=4 ID=5

Control dependency
Data dependency

Chakra Converter Internals

● Enables overlapping execution in
future simulation

CPU(1)

GPU(1) GPU(2)

CPU(4)

GPU(1) CPU
(1-2)

GPU(2)

CPU(1-1)

CPU
(1-3)

CPU(4)

ChakraHDT

ChakraHDT ET
w/ Data Dependency

Chakra Ecosystem

AI workloads
(production)

Chakra w/ timing

AI workloads
(production)

AI workloads
(production)

Future systems co-
design

Current systems
benchmarking

Converter

Synthesizer

Customer (proprietary)

OSS simulators
(e.g. ASTRA-Sim)

Internal simulators
and emulators

Internal systems

Vendor (proprietary)

PARAM Replay
Chakra

Analysis

Visualizers

Representative
(Obfuscated) Traces

Internal tools and
benchmarks

	Slide 1: Chakra: AI Workload Twin for Benchmarking and Co-design
	Slide 2
	Slide 3: AI SW/HW Co-design Requirements
	Slide 4: Chakra Execution Trace
	Slide 5: Chakra Ecosystem
	Slide 6: Chakra Execution Trace Schema
	Slide 7
	Slide 8: Chakra Execution Trace Collection
	Slide 9: Chakra Execution Trace Collection
	Slide 10: Chakra Execution Trace Collection
	Slide 11: Chakra Execution Trace Collection
	Slide 12: Chakra Execution Trace Collection
	Slide 13: Chakra Execution Trace Types
	Slide 14: Chakra Execution Trace Types
	Slide 15: Chakra Execution Trace Types Understanding Different Types of Dependencies​
	Slide 16: Chakra Execution Trace Types
	Slide 17: Chakra Execution Trace Postprocessing Steps​
	Slide 18: Trace Merger Internals
	Slide 19: Trace Merger Internals
	Slide 20: Trace Merger Internals
	Slide 21: Trace Merger Internals
	Slide 22: Trace Merger Internals
	Slide 23: Trace Merger Internals
	Slide 24: Trace Merger Internals
	Slide 25: Chakra Execution Trace Postprocessing Steps​
	Slide 26: Chakra Converter Internals
	Slide 27: Chakra Converter Internals
	Slide 28: Chakra Converter Internals
	Slide 29: Chakra Ecosystem
	Slide 30

