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ASTRA-sim Tutorial - Agenda
Time (CST) Topic Presenter

1:00 pm Overview, Introduction to Distributed ML Tushar Krishna (Georgia Tech)

1:40 pm Chakra Execution Trace, ASTRA-sim Workload Layer Taekyung Heo (NVIDIA)

2:20 pm ASTRA-sim System Layer and Network Layer William Won (Georgia Tech/AMD)

3:00 pm Coffee Break

3:30 pm Demo: Chakra and ASTRA-sim Joongun Park (Georgia Tech)

4:10 pm ASTRA-sim New Features Vinay Ramakrishnaiah (AMD)

4:40 pm ASTRA-sim Wiki and Validation William Won (Georgia Tech/AMD)

4:50 pm Closing Remarks Tushar Krishna (Georgia Tech)

Tutorial Website
includes agenda, slides, ASTRA-sim installation instructions (via source + docker image)

https://astra-sim.github.io/tutorials/micro-2024

Attention: Tutorial is being recorded  
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AI has become a distributed system problem!
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Trend 1: Large ML Models
• ML models are scaling at an unprecedented rate

https://epochai.org/trends
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Trend 2: Moore's Law
• Cannot simply rely on device scaling

https://epochai.org/trends
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Trend 3: Training Dataset
• Huge training dataset

https://epochai.org/trends
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Trend 4: Diverse Serving Use Cases

Source: https://markovate.com/blog/applications-and-use-cases-of-llm/
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System Implications
• Multiple devices are required to accommodate large-scale ML

• Compute
• In total, 21 YFLOP for training (GPT-4)
• Single NVIDIA H100 (2 PFLOPS) → 333 years to train

• Memory
• 1.8 trillion parameters (GPT-4)
• Assuming 2B/param, 3.6 TB just to store the model
• H100 HBM (80 GB) → 45 GPUs just to fit the model itself
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HPC Platforms for Distributed ML (aka AI Supercomputers)
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AMD Instinct 
Platforms

Intel Aurora 
Supercomputer

Google Cloud 
TPUv4NVIDIA HGX-H100

SuperPod

And many many more …
• xAI Collossus
• Cerebras Andromeda
• Tesla Dojo
• IBM BlueConnect
• …
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Components of AI Platforms

https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-syste/

NPU

Custom Fabrics
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Core of ML Execution
12

ModelData Result Inference

Training

Calculate Loss

Update Model
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Distributed ML
• Model and/or data should be distributed

• Across different NPUs (Neural Processing Unit)

ModelData Result

NPU NPU

Tensor Parallelism:

NPU

NPU

Data Parallelism:

13
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Communication in Distributed ML
• NPUs should communicate to synchronize data

ModelData

NPU NPU

(Partial)
Result

(Partial)
Result

send

send

(Full)
Result

Tensor Parallelism

14
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Systems challenges with Distributed Training 
• Communication!

• Inevitable in any distributed algorithm

• What does communication depend on?
• synchronization scheme: synchronous vs. asynchronous.
• parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...

• Is it a problem?
• Depends … can we hide it behind compute?
• How do we determine this? 

15
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Understanding DL Training design-space

Abstraction

Co-Design

Figure Courtesy: Srinivas Sridharan (NVIDIA)

16
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)
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DNN Models
ResNet Transformer DLRM

Operator Types: CONV2D, Attention, Fully-Connected, …
Parameter sizes: Millions to Trillions

18
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)
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Parallelization Strategies
• The way compute tasks are distributed across different compute 

nodes. Multiple ways to split the tasks:
• Split the Minibatch (Data-Parallel)
• Split the Model

• Across Tensors (Tensor-Parallel)
• Across layers: (Pipeline-Parallel)

• ….

• This also defines the communication pattern across different nodes.

20
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Parallelism: Data-Parallel
• Distribute Data across multiple nodes and replicate model (network) 

along all nodes. K

M K

N

M

N

NPU1

NPU2

21
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Parallelism: Data-Parallel
• Distribute Data across multiple nodes and replicate model (network) 

along all nodes.
• No communication during the forward pass.

Inference Communicate

Layer 1 Layer 2 …….. Layer N

Forward pass

Flow-per-layer: 1.Compute output -> 2. go to the next layer

NPU1

NPU2

22
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Layer 1 Layer 2 …….. Layer N

Backpropagation

Layer N-1

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer 

Parallelism: Data-Parallel
• Distribute Data across multiple nodes and replicate model (network) 

along all nodes.
• Communicate weight gradients during the backpropagation pass.

• via non-blocking ”All Reduce” collective
• Blocking wait at end of backpropogation for collective before forward pass 

Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
compute

Blocking 
Communicate

Inference
compute

NPU1

NPU2

23
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Parallelism: Tensor-Parallel
• Distribute Model across all nodes and replicate data along all nodes.

K

M K

N

M

N

NPU1

NPU2

24
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Parallelism: Tensor-Parallel
• Distribute Model across all nodes and replicate data along all nodes.
• Communicate outputs during the forward pass.

Layer 1 Layer 2 …….. Layer N

Forward pass

Flow-per-layer: 1.Compute output -> 2. issue output gradient comm -> 3.wait for gradient to be finished -> 4. go to the next layer

Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
compute

Blocking 
Communicate

Inference
compute

NPU1

NPU2

25
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Parallelism: Tensor-Parallel
• Distribute Model across all nodes and replicate data along all nodes 
• Communicate input gradients during the backpropagation pass.

Layer 1 Layer 2 …….. Layer N

Backpropagation

Layer N-1

Flow-per-layer: 1.Compute input gradient-> 2.issue input gradient comm -> 3.compute weight gradient -> 4. wait for input 
gradient -> 5. go to previous layer 

Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
compute

Blocking 
Communicate

Inference
compute

NPU1

NPU2
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Parallelism: Pipeline-Parallel 
• Distribute DNN layers across all nodes.

NPU 1 NPU 2 NPU N

27
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Parallelism: Pipeline-Parallel 

NPU 1

• Distribute DNN layers across all nodes.
• Communicate outputs during the forward pass.

NPU 2 NPU N

Layer 1 Layer 2
Layer N

Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
compute

Blocking 
Communicate

Inference
compute

28
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Parallelism: Pipeline-Parallel 

NPU 1

• Distribute DNN layers across all nodes.
• Communicate input gradients during the backpropagation.

Input gradient 
compute

Non-Blocking 
Communicate

Weight gradient 
compute

Blocking 
Communicate

Inference
compute

NPU 2 NPU N

Layer 1 Layer 2
Layer N
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Parallelism: Pipeline-Parallel 
• Decompose minibatch into microbatches and propagate them to the pipeline 

in-order to enhance utilization
• Challenge - bubbles

F m,n: forward-pass corresponding to micro-batch #n at device #m. 

B m,n: back-propagation corresponding to micro-batch #n at device #m. 

30
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More sophisticated schemes
31

PipeDream (Microsoft)

MegatronLM (NVIDIA) Zero++ (Microsoft)

FSDP (Meta)
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Distributed Training Stack
32
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Model Parameter Update Mechanisms

Synchronization

Asynchronous Synchronous

Communication 
Handling

Parameter-server Centralized or 
Distributed

Centralized or 
Decentralized

Collective-based N/A Distributed

33
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Synchronization: Sync. vs. Async. Training 
• Defines when nodes should exchange data

• Affects convergence time

Compute Communicate

Done
Done

Done

Asynchronous

Node1 Node2 Node3

Done
Done

Done

Synchronous

Node1 Node2 Node3

Synchronous 
training most 
popular

34
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Communication Handling
• Parameter Server

Node 1 Node 2 Node 3

Step 1: Each node sends its
model gradients to the
parameter server to be
reduced with other gradients
and update the model

Parameter 
Server

Node 1 Node 2 Node 3

Step 2: The parameter server
sends the updated model to
the compute nodes to begin
the new iteration.

Parameter 
Server

35
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Communication Handling
• Collective-based: Compute Nodes 

directly talk to each other to globally 
reduce their gradients and update the 
model through All-Reduce 
communication pattern.

Node 1

Node 2 Node 3

“Collective Communication”
(from MPI)

More details later

Exchanging Output Activations or Input Gradients: 
• It may be required depending on the parallelization strategy (discussed next)
• Handled either via collective based patterns or direct Node-to-Node sends/recvs (no parameter server is used).

36
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When are collectives needed?

Model (i.e. 
weight) Updates

Input Gradient Exchange Output Activation 
Exchange

Param-server N Data-parallel:  N
Tensor-parallel: Usually*

Pipeline-Parallel:  N

Data-parallel:  N
Tensor-parallel: Usually*

Pipeline-Parallel:  N

Collective-based Y (All-Reduce) Data-parallel: N
Tensor-parallel: Usually*

Pipeline-Parallel: N

Data-parallel: N
Tensor-parallel: Usually*

Pipeline-Parallel: N
* All-reduce, All-gather, Reduce-scatter, All-to-All

37
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)

38
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Training: Forward Pass
39

• In forward pass, each DNN layer computes Output Activation
• From Input Activation (=output activation from last layer)
• And Model Weights
• Commonly through GEMM (Matrix Multiplication)

K

M

Input
Activation

K
N

Model
Weight

M

N

Output
Activation

(Input Activation of Layer i + 1)
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Training: Backward Pass
40

• In backward pass, each DNN layer computes:
• Weight Gradient: to update model weights
• Input Gradient: required to calculate weight gradient of layer (i - 1)
• Commonly GEMM operations

K

N

Model
Weight

(Transpose)

M

N

Input
Gradient

of Layer (i + 1)

K

M

Input
Gradient
of Layer i

K
M

Input
Activation

(Transpose)

K
N

Weight
Gradient of Layer i

M

N

Input
Gradient

of Layer i + 1
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Compute Efficiency Depends on Data Reuse
41

FLOPs/Byte

Attainable Performance 
(GFLOPS) Peak Compute Performance 

(Depends on number of PEs)

Floating Point 
Ops / Second

Memory BW Compute  
bound 
region

Mem  
bound 
region

Floating Point Ops / Byte

Compute Bound => Throughput bound by number of compute units

Memory Bound  => Throughput bound by Memory BW

Transformer models are heavily memory bound 
(Source: Kao et al, FLAT: An Optimized Dataflow for 
Mitigating Attention Bottlenecks, ASPLOS 2022)
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Effect of Enhanced Compute Efficiency on 
Communication

Compute Capability

ResNet-50

S. Rashidi et al.,“ASTRA-SIM: Enabling SW/HW 
Co-Design Exploration for Distributed DL 

Training Platforms”, ISPASS 2020

42

3D torus with total of 32 
NPUs (2X4X4) 
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)

43
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Communication in Distributed ML
• NPUs should communicate to synchronize outcomes

ModelData

NPU NPU

(Partial)
Result

(Partial)
Result

send

send

(Full)
Result

Tensor ParallelismE.g.,

44
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Example: Tensor Parallelism
• Each of the NPU produces part of ML activation results

• NPUs then synchronize to recover the full activation result

Activation (NPU 1)

M1 M2 M3

[1, 6, 2]

Activation (NPU 2)

M1 M2 M3

[-2, 7, 3]

Activation (NPU 3)

M1 M2 M3

[7, -3, 1]

Activation (Full Model)
(in all NPU 1, 2, 3)

M1 M2 M3

[1, 6, 2] [-2, 7, 3] [7, -3, 1]

Synchronization

45
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Collective Communication “Patterns”
• Used for communication/ synchronization in distributed training/inference

• Specific pattern depends on parallelization strategy
Parallelization Reduce-Scatter All-Gather All-Reduce

Data Parallel ✓

Tensor Parallel ✓

Hybrid Parallel ✓ ✓ ✓

FSDP ✓ ✓

ZeRO ✓ ✓

46
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Collective Communication “Algorithms”
• Routing algorithm to implement collective patterns

• Collective communication libraries (CCLs, e.g., NCCL, RCCL, oneCCL) 
use diverse collective algorithms to implement collective 
communication patterns

• Example All-Reduce Algorithms: Ring, Direct, Halving-Doubling, Rabenseifner, 
Double Binary Tree, etc.

• Given a network topology, an efficient algorithm to run collective 
communication is called a topology-aware collective algorithm

47
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Example

4 2

1

3

4 2

1

3

1 2 3 4

Switch

Physical Topology: Ring

Physical Topology: Fully Connected

Physical Topology: Switch

48
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2

3

4

1

Collective Algorithm: Ring All-Reduce

4 2

1

3

1

2

4

4

1

2

3

3 3

4

1

2

NPU

Chunk

All-Gather finished
(All-Reduce finished)

Physical Topology: Ring

✓ All links utilized
✓ No congestion

60
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Collective Algorithm: Direct All-Reduce

1

4 2

1

3

2

4

3

1

2

4
3

1 2

43

1

2

4

3

NPU

Chunk

All-Gather finished
(All-Reduce finished)

Physical Topology: Fully-Connected

✓ All links utilized
✓ No congestion

65
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1 2 3 4

NPU

Chunk1 2 3 4

Switch

1 23 412 3434 12

All-Gather finished
(All-Reduce finished)

Physical Topology: Switch

Collective Algorithm:
Recursive Halving Doubling All-Reduce

✓ All links utilized
✓ No congestion

83
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Topology Building Block Topology-aware Collective 
Algorithm

Ring Ring

FullyConnected Direct

Switch HalvingDoubling

Summary: Basic Collective Algorithms
• No network congestion while running collective communication

What about other topologies?

84
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Topology-aware Collective Algorithms
• Optimal collective algorithm heavily depends on network topology

• Simple collective algorithms will not directly map

Physical Topology: 2D Torus

Ring Algorithm
Network Underutilization!!

85
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Multi-dimensional Collective Algorithm
• Phased approach of Reduce-Scatter and All-Gather

M. Cho et al., "BlueConnect: Decomposing all-reduce for deep learning on heterogeneous network hierarchy," 
IBM Journal of Research and Development

86
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Distributed Training Stack
87

Figure Courtesy: Srinivas Sridharan (Facebook)
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Networking Technologies

NPU NPUNPU NPUNPU NPUNPU NPUNPU NPUNPU NPUNPU NPUNPU NPU

Network

Chiplets / 
Advanced Packaging 

/ Wafercale

Rack-scale Interconnects 
(e.g., Nvlink/XeLink/..)

Infiniband/
Ethernet

88
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Hierarchical Network Architectures
89
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Examples
90

NVswitch→ Infiniband

Infiniti → Infiniti

Custom NICs → RoCE

NVlink→ RoCE 

3D Electrical Torus  → Optical Wafer-scale → SwarmX Tree

On-package Mesh → EthernetOn-package Mesh → off-chip mesh

NVIDIA Intel

AMD Meta

Google Cerebras

Tensorrent Tesla

Scale up → scale out
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)
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Example: Infiniband vs RoCE
92
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Summary and Takeaways
• Design of Distributed AI/ML Platforms is an ongoing open-research 

area

• Many emerging supercomputing systems being designed specifically 
for this problem!

• Co-design of algorithm and system offers high opportunities for 
speedup and efficiency

93
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