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ASTRA-sim Tutorial - Agenda

Time (CST) Topic Presenter
1:00 pm Overview, Introduction to Distributed ML Tushar Krishna (Georgia Tech)
1:40 pm Chakra Execution Trace, ASTRA-sim Workload Layer Taekyung Heo (NVIDIA)
2:20 pm ASTRA-sim System Layer and Network Layer William Won (Georgia Tech/AMD)
3:00 pm Coffee Break
3:30 pm Demo: Chakra and ASTRA-sim Joongun Park (Georgia Tech)
4:10 pm ASTRA-sim New Features Vinay Ramakrishnaiah (AMD)
4:40 pm ASTRA-sim Wiki and Validation William Won (Georgia Tech/AMD)
4:50 pm Closing Remarks Tushar Krishna (Georgia Tech)

Tutorial Website
includes agenda, slides, ASTRA-sim installation instructions (via source + docker image)
https://astra-sim.qithub.io/tutorials/micro-2024

Attention: Tutorial is being recorded
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Al has become a distributed system problem!

Some key facts about GPT-4:

Total parameters — ~1.8 trillion (over 10x more than GPT-3)

e Architecture — Uses a mixture of experts (MoE) model to improve scalability

e Training compute —ITrained on ~25,000 Nvidia A100 GPUs pver 90-100 days

* Training data — Trained on a dataset of ~13 trillion tokens

* [Inference compute —|Runs on clusters of 128 A100 GPU4 for efficient deployment

Context length — Supports up to 32,000 tokens of context

Ph.D. Thesis Proposal William Won | School of CS | Georgia Institute of Technology

Sep 23,2024



Trend 1: Large ML Models

* ML models are scaling at an unprecedented rate

Frontier models
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Trend 2: Moore's Law

e Cannot simply rely on device scaling

Ph.D. Thesis Proposal

Computational
performance

135 x/year

The amount of FLOP/s for GPUs
in FP32 precision is growing at
1.35x per year. A similar trend is
observed for FP16.

90% confidence interval: 1.31x to
1.40x.

I Memory capacity Likely

12 x/year

DRAM capacity (Byte) is growing
by 1.2x per year.

90% confidence interval: 1.1x to
1.3x.

I Memory bandwidth

1 1 8 x/year

DRAM bandwidth in Byte/s is
growing by 1.18x per year.

90% confidence interval: 1.14x to
1.24x.

William Won | School of CS | Georgia Institute of Technology

Likely

®
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Trend 3: Training Dataset

* Huge training dataset

Effective stock (number of tokens)
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Trend 4: Diverse Serving Use Cases

@ e f

Image to Text @

| Popular LLM . )
Chatbots Applications Sentiment Analysis

Data Cleaning k - Anomaly Detection

®

Source: https://markovate.com/blog/applications-and-use-cases-of-llm/



System Implications

* Multiple devices are required to accommodate large-scale ML

* Compute

 |n total, 21 YFLOP for training (GPT-4)
 Single NVIDIA H100 (2 PFLOPS) - 333 years to train

* Memory
e 1.8 trillion parameters (GPT-4)

 Assuming 2B/param, 3.6 TB just to store the model
e H100 HBM (80 GB) - 45 GPUs just to fit the model itself

Ph.D. Thesis Proposal William Won | School of CS | Georgia Institute of Technology Sep 23,2024



HPC Platforms for Distributed ML (aka Al Supercomputers)

And many many more ...
XAl Collossus
 Cerebras Andromeda
e Tesla Dojo

 |BM BlueConnect

TPUv4 y

NVIDIA HGX-H100

SuperPod
Ll | bl

Intel Aurora
Supercomputer

AMD Instinct
Platforms
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Components of Al Platforms

Custom Fabrics

Ph.D. Thesis Proposal

| |

CPU NIC NIC CPU NIC
il s
——— 3 D — } —
— i [ U
PCle Switches PCle Switches

https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-syste/

William Won | School of CS | Georgia Institute of Technology
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Core of ML Execution

X

ASTRA-sim Tutorial @ MICRO 2024

Result =)

Calculate Loss

Update Model

Tushar Krishna | School of ECE| Georgia Institute of Technology

Inference
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Distributed ML

 Model and/or data should be distributed
e Across different NPUs (Neural Processing Unit)

I
— Result

Tensor Parallelism:

Data Parallelism:
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Communication in Distributed ML

* NPUs should communicate to synchronize data

ASTRA-sim Tutorial @ MICRO 2024

1 Tensor Parallelism

d -

/

(Partial)
Result

Tushar Krishna | School of ECE| Georgia Institute of Technology
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15
Systems challenges with Distributed Training =

e Communication!
* Inevitable in any distributed algorithm

* What does communication depend on?
* synchronization scheme: synchronous vs. asynchronous.
e parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...

* |s it a problem?
* Depends ... can we hide it behind compute?
 How do we determine this?
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Understanding DL Training design-space

ﬂ | owvmodas | > DLAM, ResiNet-50, Transformer, GNMT

Workload Platform-aware Hybrid, Pipelined Parallelism
Layer
Communication Policy and Pattern Distributed worker, Parameter Server / /
ﬂ Framework-level Scheduling Sync/Async, Blocking/Non-blocking —
o — Abstraction
C

System Communication Mechanism § Compute Topology-aware Collectives, Send/Recv, RP
Layer Design Dataflow, Microarchitecture, Flexibility, Sparsity Support
0 Communication Scheduling LIFO. FIFO. Eusion

ﬂ Messaging/Transport Layer TCP, RDMA (+ GPUDirect RDMA)
Network Endpoint Design and Connectivity . # links, BW per link, architecture (chip/package/board),

NIC offload, compression

Layer
y Hierarchical Fabric Design and Topology Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt
Figure Courtesy: Srinivas Sridharan (NVIDIA
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Distributed Training Stack

. L. Data, Model, Platform Agnostic Hybrid,
Workload Workload Parallelization Strategy Platform-aware Hybrid, Pipelined Parallelism
Layer
Communication Policy and Pattern — > Distributed worker, Parameter Server
ﬂ Framework-level Scheduling —> Sync/Async, Blocking/Non-blocking
S;gm Communication Mechanism || compute | —> Topology-aware Collectives, Send/Recv, RPC
Layer Design | —> pataflow, Microarchitecture, Flexibility, Sparsity Support

O Communication Scheduling > LIFO. FIFO. Fusion
ﬂ Messaging/Transport Layer - —> TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivity # links, BW per link, architecture (chip/package/board),

N::”::k NIC offload, compression
y Hierarchical Fabric Design and Topology Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh
ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA




DNN Models

ResNet

Skip Connection
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‘
avg pool

Layer 2 Layer 3 Laver 4

31%1

0

s o
fc 1000

Fully connected

fc 128

DLRM

Pairwise interaction

Output
Probabilities
Transformer :
(. N\
[ Add & Norm |
Feed
Forward
4 1 ~\ | Add & Norm I:
g e Mutt-Head
Feed Attention
Forward 7 7 Nx
N —
Nx Add & Norm
f‘" Add & Norm | Vacked
Multi-Head Multi-Head
Attention Attention
AT ") O, T
D — \ & _J)
Positional Position
Encoding 5% Encodin
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Operator Types: CONV2D, Attention, Fully-Connected, ...
Parameter sizes: Millions to Trillions

Tushar Krishna | School of ECE| Georgia Institute of Technology

Embedding Embedding
table 1 table M

Categorical Categorical

feature 1 feature M
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Distributed Training Stack

ﬂ DNN Models ——> DLRM, ResNet-50, Transformer, GNMT
.. Data, Model, Platform Agnostic Hybrid,
Workload WU G Platform-aware Hybrid, Pipelined Parallelism
Layer
Communication Policy and Pattern — > Distributed worker, Parameter Server

ﬂ Framework-level Scheduling —> Sync/Async, Blocking/Non-blocking

S Gtem Communication Mechanism || Compute | —> Topology-aware Collectives, Send/Recv, RPC
ys .

Layer — . Design | —> pataflow, Microarchitecture, Flexibility, Sparsity Support
O Communication Scheduling LIFO, FIFO, Fusion

ﬂ Messaging/Transport Layer - TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivi # links, BW per link, architecture (chip/package/board),
Nitwork P g v NIC offload, compression
ayer
y Hierarchical Fabric Design and Topology Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh
ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA




Parallelization Strategies

* The way compute tasks are distributed across different compute
nodes. Multiple ways to split the tasks:
 Split the Minibatch (Data-Parallel)
* Split the Model

* Across Tensors (Tensor-Parallel)
* Across layers: (Pipeline-Parallel)

* This also defines the communication pattern across different nodes.

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024



Parallelism: Data-Parallel

* Distribute Data across multiple nodes and replicate model (network)
along all nodes. g

NPU1

NPU2

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024



Parallelism: Data-Parallel

* Distribute Data across multiple nodes and replicate model (network)

along all nodes.
* No communication during the forward pass.

Layer 1 Layer2 ... Layer N

NPU1 D
wo: [T

Flow-per-layer: 1.Compute output -> 2. go to the next layer

Inference l Communicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology
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Parallelism: Data-Parallel

* Distribute Data across multiple nodes and replicate model (network)
along all nodes.

e Communicate weight gradients during the backpropagation pass.

* via non-blocking "All Reduce” collective
* Blocking wait at end of backpropogation for collective before forward pass

Layer 1 Layer2 ... Layer N-1 Layer N
— —
— —
Backpropagation

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer

Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate
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.
Parallelism: Tensor-Parallel

 Distribute Model across all nodes and replicate data along all nodes.

N

NPU1

NPU2
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Parallelism: Tensor-Parallel

 Distribute Model across all nodes and replicate data along all nodes.
« Communicate outputs during the forward pass.

Layer 1 Layer2 ... Layer N

NPU1

D Forward pass

NPU2
Flow-per-layer: 1.Compute output -> 2. issue output gradient comm -> 3.wait for gradient to be finished -> 4. go to the next layer

Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate
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Parallelism: Tensor-Parallel

 Distribute Model across all nodes and replicate data along all nodes
« Communicate input gradients during the backpropagation pass.

Layer 1 Layer 2 Layer N-1 Layer N
— —
| — Backpropagation

Flow-per-layer: 1.Compute input gradient-> 2.issue input gradient comm -> 3.compute weight gradient -> 4. wait for input
gradient -> 5. go to previous layer

Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate
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Parallelism: Pipeline-Parallel

 Distribute DNN layers across all nodes.

NPF 1 N%U 2 NPU N

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology
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Parallelism: Pipeline-Parallel

 Distribute DNN layers across all nodes.
« Communicate outputs during the forward pass.

NPU 1

2
=
c
N

[]
&
[]

q q
Layer N
Layer 1 Layer 2 y
Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate
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Parallelism: Pipeline-Parallel

 Distribute DNN layers across all nodes.
 Communicate input gradients during the backpropagation.

NPU 1 : NPU 2 : NPU N
o @ |----- O
| |
| |
Layer 1 Layer 2 ayer
Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate
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Parallelism: Pipeline-Parallel

* Decompose minibatch into microbatches and propagate them to the pipeline
in-order to enhance utilization
e Challenge - bubbles

Fao | For | Faz | Fss| Bas | Baz | Bas | Bao Update

Fzo | For | Fzz | Fas Bos | Boz | Bat | Bao Update

Fio | Fur | Frz | Fs Bis | Biz | Bus | Bug Update
Foo | For | Foz | Fos Bubble Bos | Boz | Bos | Boo | Update

F - forward-pass corresponding to micro-batch #n at device #m.

B .n: back-propagation corresponding to micro-batch #n at device #m.

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024



More sophisticated schemes

Pipelined model parallelism

Fully sharded data parallel training

nNnnnnnnrang
o Worker 1 | &&%& \ ‘
N 3
0 g Worker 2 \ AN » ua
N \ N\
: g 0 Worker 3 \\ \
0 0 Worker 4
0 . L
Data Startup State Steady' State
parallellsm > SR
Time (LocaL)
Stage 1 Stage 2 Stage 3 Stage 4 I Forward Pass [ | Backward Pass Idle _]
PipeDream (Microsoft)
FSDP (Meta)
= AN N = r Y Memory usage without ZeRO With ZeRO
5| I ] e 5 = [o | i
o) ! D O 5 | o) (GD) 5 a Data, II GPU, Data, !II GPU,
:92 Iagwmpw@wi 2= ® q;>-::>
& 15~ 8 5 G H: .
3| | ; 3 - Dato, HEEE Data, HEER
| | - Em il H
E Model g g Model \ Data, GPU, Data, GPU,
\_Parallel \__ Perallel
2 All-Reduce 2 All-Reduce ore., EERE EE oua,, B g
(forward + backward) (forward + backward)
++ (Mi
MegatronLM (NVIDIA) Zero++ (Microsoft)
Nov 3,2024
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Distributed Training Stack

U DNN Models —> DLRM, ResNet-50, Transformer, GNMT
. .. Data, Model, Platform Agnostic Hybrid,
Workload Workload Parallelization Strategy Platform-aware Hybrid, Pipelined Parallelism
Communication Policy and Pattern Distributed worker, Parameter Server
Framework-level Scheduling Sync/Async, Blocking/Non-blocking

S}gm Communication Mechanism || compute | —> Topology-aware Collectives, Send/Recv, RPC

Layer — _ Design | —> pataflow, Microarchitecture, Flexibility, Sparsity Support
O Communication Scheduling LIFO, FIFO, Fusion

ﬂ Messaging/Transport Layer TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivity # links, BW per link, architecture (chip/package/board),
NIC offload, compression

ﬂ Fully-Connected, Hyper-Cube Mesh

Network
Layer

Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt




Model Parameter Update Mechanisms

Synchronization

Asynchronous

Synchronous

Communication
Handling

Parameter-server

Centralized or
Distributed

Centralized or
Decentralized

Collective-based

N/A

Distributed

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology
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Synchronization: Sync. vs. Async. Training

* Defines when nodes should exchange data
» Affects convergence time

Nodel Node2 Node3 Nodel Node2 Node3
Done Synchronous Done
ﬁ L
Done training most Done
4_
popular
Done Done

4_—* M

Asynchronous Synchronous

Compute Gl COMmMmunicate
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Communication Handling

e Parameter Server

Parameter
Server

Parameter
Server

Node 1 Node2 Node3
Node 1 Node2 Node 3

Step 2: The parameter server
sends the updated model to

Step 1: Each node sends its
model gradients to the

parameter server to be
reduced with other gradients
and update the model

the compute nodes to begin
the new iteration.
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Communication Handling

* Collective-based: Compute Nodes
directly talk to each other to globally

reduce their gradients and update the
model through All-Reduce

communication pattern.

Node 1

Node 2 Node 3

Exchanging Output Activations or Input Gradients:

55\/@/5
\é

broadcast

5\@\ /5/ v
o

gather

@ULV
ANV

scatter

0000
\\/

reduction

€ e

“Collective Communication”

* [t may be required depending on the parallelization strategy (discussed next)
* Handled either via collective based patterns or direct Node-to-Node sends/recvs (no parameter server is used).

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology

(from MPI)

More details later
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When are collectives needed?

Param-server Data-parallel: N

Data-parallel: N
Tensor-parallel: Usually® Tensor-parallel: Usually”
Pipeline-Parallel: N Pipeline-Parallel: N

Collective-based Y (All-Reduce) Data-parallel: N Data-parallel: N

Tensor-parallel: Usually®  Tensor-parallel: Usually®
Pipeline-Parallel: N Pipeline-Parallel: N
* All-reduce, All-gather, Reduce-scatter, All-to-All
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Distributed Training Stack

U

Workload
Layer

]

<

System
Layer

O

U

Network
Layer

{

DNN Models

Workload Parallelization Strategy

Communication Policy and Pattern

Framework-level Scheduling

Communication Mechanism fil Compute
Design

Communication Scheduling

Messaging/Transport Layer

Endpoint Design and Connectivity

Hierarchical Fabric Design and Topology

Network Implementation

—> DLRM, ResNet-50, Transformer, GNMT

Data, Model, Platform Agnostic Hybrid,
Platform-aware Hybrid, Pipelined Parallelism

— > Distributed worker, Parameter Server

—> Sync/Async, Blocking/Non-blocking

Topology-aware Collectives, Send/Recv, RPC
Dataflow, Microarchitecture, Flexibility, Sparsity Support
LIFO, FIFO, Fusion

TCP, RDMA (+ GPUDirect RDMA)

# links, BW per link, architecture (chip/package/board),
NIC offload, compression

Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

—> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA




Training: Forward Pass

* In forward pass, each DNN layer computes Output Activation

* From Input Activation (=output activation from last layer)
 And Model Weights
e Commonly through GEMM (Matrix Multiplication)

K N
N
o | =
Input Model Output
Activation Weight Activation

(Input Activation of Layer i + 1)

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology
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Training: Backward Pass

* In backward pass, each DNN layer computes:
* Weight Gradient: to update model weights
 Input Gradient: required to calculate weight gradient of layer (i - 1)
e Commonly GEMM operations

N K K
M N o
Input
Activation Input Weight Input Model Input
(Transpose) Gradient Gradient of Layer i Gradient Weight Gradient
of Layeri+1 of Layer (i+1) (Transpose) of Layeri

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024



Compute Efficiency Depends on Data Reuse

Attainable Performance

(GFLOPS)

Floating Point
Ops / Second

Compute Bound => Throughput bound by number of compute units

A

/ Mem
0 bound
’ region

Peak Compute Performance
(Depends on number of PEs)

Compute
bound
region

v

FLOPs/Byte
Floating Point Ops / Byte

Memory Bound => Throughput bound by Memory BW

FC’s compute utilization can often be
increased by increasing batch size.

CONV usually have good
compute utilization.

140 1 BERT TrXL XM __ XIM \
120 - Nl e’
100 i Compute-bound (Potential full compute utilization)
g Models Batch Operator
E 80 BERT L/A w
5 FC ®
g . s TrXL =
> 801 (¥ B=1 | (k//v/0)
[/ i (light color), Fe
4 NWCWTO{‘\/ | B=128
40 | XLM
TrXL\_A / (:Jound (dark color) (FF1/FF2)
' \ (compute
BERZTO I\ / under ResNet50 SRR +
;‘ utilization) B=128
0\ 100 200 300 400 500 600

\

Operation Intensity (FLOP/Byte)

L/A operator is seriously memory-bounded. Packing larger batch size
does not help increase its performance. More advanced trick is needed.

Transformer models are heavily memory bound

(Source: Kao et al, FLAT: An Optimized Dataflow for
Mitigating Attention Bottlenecks, ASPLOS 2022)
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Effect of Enhanced Compute Efficiency on
Communication

ResNet-50

100%
g 80%
o 60%
=
< 40%
o
= 20%
0%
0.5X 1X 2X
Compute power
m Compute time = Exposed communication
3D torus with total of 32 Compute Capability

NPUs (2X4X4)

S. Rashidi et al.,"ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms”, ISPASS 2020
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Distributed Training Stack

U DNN Models —> DLRM, ResNet-50, Transformer, GNMT
Workload |___"Vorkload Parallelization Strategy g ?f:t?é)r“r”n?iiv'gzaﬁffé?fg?pﬁﬂig ézrrigl’lelism
aver Communication Policy and Pattern — > Distributed worker, Parameter Server
ﬂ Framework-level Scheduling —> Sync/Async, Blocking/Non-blocking
S)gm Compute | —> Topology-aware Collectives, Send/Recv, RPC
Layer [ || Pesi80 | —> Dataflow, Microarchitecture, Flexibility, Sparsity Support

O Communication Scheduling LIFO. FIFO. Eusion

ﬂ Messaging/Transport Layer - TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivity # links, BW per link, architecture (chip/package/board),
N‘;;w::k NIC offload, compression
Fully-Connected, Hyper-Cube Mesh
ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA




Communication in Distributed ML

* NPUs should communicate to synchronize outcomes

E.g.,

/

1 Tensor Parallelism

< I

(Partial)
Result

—)

send

send

ASTRA-sim Tutorial @ MICRO 2024
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(Partial)
Result

(Full)
Result
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Example: Tensor Parallelism

* Each of the NPU produces part of ML activation results
* NPUs then synchronize to recover the full activation result

[1, 6, 2]
Activation (NPU 1)

synchronization | NN L O
BTN ——

[1,6, 2] [-2, 7, 3] [7,-3, 1]

Activation (Full Model)
(inallNPU 1, 2, 3)

[_2; 7; 3]
Activation (NPU 2)

M1 | M2 | M3 nLNENe o BLIE2IES
1 10( 11| 1
[7,-3, 1] 2 ) 2|l 2| 2
Activation (NPU 3) 3 33|33
All-Gather
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Collective Communication “Patterns”

* Used for communication/ synchronization in distributed training/inference

N1 | N2| N3 N1 N2 N3

[1]|(2][(3] 1+2+3

L1 {2 ]|[[3 | e 1+2+3

L1 ]|[2][(3] [1+2+3]
Reduce-Scatter

N1 | N2 | N3 N1 N2 N3

(12| 3] 1+2+3|[[1+2+3|[|[1+2+3|

11 ][ 2]|[ 3 |- [1+2+3|[[1+2+3]|1+2+3|

1|2 ][C3] [1+2+3]|[1+2+3]|[1+2+3]

All-Reduce

N1 | N2 | N3 N1
[1] [1]
[2] wm[2]
[3] [3]
All-Gather

N1 | N2 | N3 N1
28] [
[1]|[2]((S] mumm[ 2]
2]I3] [3]
All-to-All

* Specific pattern depends on parallelization strategy

N2

(1]
[2]
[3]

EREE

Parallelization Reduce-Scatter  All-Gather  All-Reduce
Data Parallel v
Tensor Parallel v
Hybrid Parallel v v v
FSDP v v
ZeRO v v
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(1]
[2]
[3]
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Collective Communication “Algorithms”

* Routing algorithm to implement collective patterns

 Collective communication libraries (CCLs, e.g., NCCL, RCCL, oneCCL)
use diverse collective algorithms to implement collective
communication patterns

 Example All-Reduce Algorithms: Ring, Direct, Halving-Doubling, Rabenseifner,
Double Binary Tree, etc.

* Given a network topology, an efficient algorithm to run collective
communication is called a topology-aware collective algorithm
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Example
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Collective Algorithm: Ring All-Reduce " N

[1]

N2 | N3 N1

[2]|3]
[2[[3 ]
[2]|(3]

Reduce-Scatter
[1]((1]

N1|N2|N3 N1
Y £1e1e8
v" All links utilized (sl

— 2]
: a e e e All-Gather
v No congestion No N1 | N2 | NG

N2

N2 [ N3

[3] [8]

I%I I%I [3] [1+2+3[1+2+3|[1+2+3
n [1][[2]|[[3] === [{+2+3[[1+2+3]|1+2+3
[A]|2]|(3] [1+2+3][1+2+3]|[1+2+3]

All-Reduce
g I e
2 O O Chunk

All-Gather finished
(All-Reduce finished)

Physical Topology: Ring
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Collective Algorithm: Direct All-Reduce N

[1]

N2 | N3 N1

[2]|3]
[2[[3 ]
[2]|(3]

Reduce-Scatter
N1 |N2|[N3 N1

[1] [1]
[2]] ==m[2]
[3] [8]

All-Gather

N2

N2
[1]
[2]
[3]

N3
[1]
[2]
[3]

v" All links utilized
v No congestion

N1|N2|N3 N1
[(1][2]l(3] [1+2+3]
[1][[2][[3] === [1+2+3
[|2]|(3] [1+2+3]

All-Reduce

N2
[1+2+3]
1+2+3
[1+2+3]

N3

[1+2+3]
1+2+3
[1+2+3]

All-Gather finished
(All-Reduce finished)

Physical Topology: Fully-Connected
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Collective Algorithm:

N1

Recursive Halving Doubling All-Reduce &l

[1]

N2 | N3 N1

[2]|3]
[2[[3 ]
[2]|(3]

Reduce-Scatter
N1 |N2|[N3 N1

[1] [1]
[2]] ==m[2]
[3] [8]

All-Gather
N3 N1

N
Iill%llzl [1+2+3]
[1]|[2]|(3 == [{+2+3]
[A]|(2]|(3] [1+2+3]

All-Reduce

N2 N3

N2
[1]
[2]
[3]

N3
[1]
[2]
[3]

v" All links utilized
v No congestion

N2
[1+2+3]
1+2+3
[1+2+3]

N3

[1+2+3]
1+2+3
[1+2+3]

0000 6000 60000 06000

All-Gather finished PO Pl P2 P3
(All-Reduce finished) O O O O
Stepl N4 A

Physical Topology: Switch Step2 N N7 7
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Summary: Basic Collective Algorithms

* No network congestion while running collective communication

Topology-aware Collective

Topology Building Block

Algorithm
1]
E.[!! Ring Ring
3 -]
1]
E‘A‘m ]
AL/ FullyConnected Direct
(3]

70N
A B Switch HalvingDoubling

What about other topologies?
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Topology-aware Collective Algorithms

* Optimal collective algorithm heavily depends on network topology
e Simple collective algorithms will not directly map

ANA

Ring Algorithm —

Network Underutilization!!

]

L

[ ] \ [ ]

Physical Topology: 2D Torus
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Multi-dimensional Collective Algorithm
* Phased approach of Reduce-Scatter and All-Gather

Dim1i
¢ > /(1) Dim 1: Reduce-Scatter
S S (2) Dim 2: Reduce-Scatter
(3) Dim 3: Reduce-Scatter
Dim3: . § . E . (4) Dim 3: All-Gather

(5) Dim 2: All-Gather
(6) Dim 1: All-Gather

.......

- -
ey -
LR
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Distributed Training Stack

U

Workload
Layer

]

<

System
Layer

O

U

Network
Layer

{

DNN Models

Workload Parallelization Strategy

Communication Policy and Pattern

Framework-level Scheduling

Communication Mechanism || Compute

Design

Communication Scheduling
Messaging/Transport Layer -

Endpoint Design and Connectivity

Hierarchical Fabric Design and Topology

Network Implementation

—> DLRM, ResNet-50, Transformer, GNMT

Data, Model, Platform Agnostic Hybrid,
Platform-aware Hybrid, Pipelined Parallelism

— > Distributed worker, Parameter Server

—> Sync/Async, Blocking/Non-blocking

—> Topology-aware Collectives, Send/Recv, RPC
> Dataflow, Microarchitecture, Flexibility, Sparsity Support
LIFO, FIFO, Fusion

TCP, RDMA (+ GPUDirect RDMA)

# links, BW per link, architecture (chip/package/board),
NIC offload, compression

Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

—> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (Facebook




Networking Technologies

Chiplets /
Advanced Packaging
/ Wafercale

Rack-scale Interconnects
(e.g., Nvlink/XeLink/..)

¥

Infiniband/
Ethernet

'/> Network
~
NPU( ([NPU NPU( ([NPU NPU( [NPU NPU( [NPU| [NPU| |NPU NPU( ([NPU NPU( ([NPU NPU( ([NPU
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Hierarchical Network Architectures

g Datacenter Network 2

Network -7\ /
% Intra-Node Network }

wday miey sheg

\S

C1C]
C1C]
C1C]
C1C]

OO0 |

o o Y
OOg s

OO e
m|mk y
OO

L0

HBM NPU . CPU . NIC Scale-_up Scale-put
Fabric Fabric
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Scale up = scale out m
Examples

Cerebras
NVIDIA Google
- WLink =& L SwarmX Interconnect cen
o = o = .. 18 switches ... Switch Swarmx =
External The HLS-1 MemoryX E——— cs2
Optical seatiie = e
- . Csj
J &= —
| e eREEE ., EEEEER009092 B | G vy | cs-2
[TIT] [TIT] [TIT] NVSwitch
NVLink | AReRRAR
-------- sunnunnn| .. 32 servers (256 GPUs) ... susmssan| H100 = N 7
NVswitch > Infiniband 3D Electrical Torus = Optical Wafer-scale = SwarmX Tree
AMD B Tensorrent Tesla

Galaxy - Supercomputer Topology V1 Dojo Training Matrix

a ” Emerald Pools
= - ) —
= g 3
4 el
- A

Infiniti = Infiniti NVlink = RoCE On-package Mesh = off-chip mesh On-package Mesh = Ethernet

Clear Creek

|

Angels Landing
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Distributed Training Stack

U

Workload
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ﬂ Network Implementation
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— > Distributed worker, Parameter Server

—> Sync/Async, Blocking/Non-blocking

—> Topology-aware Collectives, Send/Recv, RPC
> Dataflow, Microarchitecture, Flexibility, Sparsity Support
LIFO, FIFO, Fusion

TCP, RDMA (+ GPUDirect RDMA)

# links, BW per link, architecture (chip/package/board),
NIC offload, compression

Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh
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Example: Infiniband vs RoCE

End-to-end delay
Flow Control Mechanism

Forwarding Mode

Load Balancing Mode

Network Configuration

=
§
<

ASTRA-sim Tutorial @ MICRO 2024

InfiniBand RoCEv2

2us Sus
Credit-based flow control mechanism PFC/ECN, DCQCN
Forwarding based on Local ID IP-based Forwarding
Packet-by-Packet Adaptive Routing ECMP Routing
e lchlaka bbbl Route Convergence
Zero configuration through UFM Manual Configuration

InfiniBand VS. RoCE v2 technical comparison
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Summary and Takeaways

* Design of Distributed Al/ML Platforms is an ongoing open-research
area

* Many emerging supercomputing systems being designed specifically
for this problem!

e Co-design of algorithm and system offers high opportunities for
speedup and efficiency
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