& OOF %
=) %" .
@) O S F

https://astra-sim.github.io https://github.com/mlcommons/chakra

ASTRA-sim and Chakra Tutorial:
|_Introduction to Distributed ML

Tushar Krishna
Associate Professor
School of ECE, Georgia Institute of Technology
tushar@ece.gatech.edu

ASTRA-sim Tutorial
@MICRO 2024
November 3, 2024

https://astra-sim.github.io/
https://github.com/mlcommons/chakra

Welcome

Presenters

B 2

Tushar Krishna William Won Joongun Park Taekyung Heo Vinay Ramakrishnaiah
Associate Professor, ECE Ph.D. Candidate, CS Post Doctoral Researcher Senior HPC Middleware Senior Member of Technical

Georgia Tech Georgia Tech Georgia Tech Developer, NVIDIA Staff. AMD
tushar@ece.gatech.edu william.won@gatech.edu jpark3234@gatech.edu theo@nvidia.com vinay.ramakrishnaiah@amd.com

Contributors & Collaborators

Georgia Tech Meta NVIDIA AMD ML

Jinsun Yoo Saeed Rashidi Srinivas Sridharan Ruchi Shah Commons + many more
Changhai Man Louis Feng Brad Beckmann Chakra: Advancing industry/academic
Ziwei Li Sheng Fu g o= researchers &

Furkan Eris design for Future Al Systems

Divya Kiran Kadiyala Brian Coutinho Intel +more S engineers

Adi Gangidi

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

mailto:tushar@ece.gatech.edu
mailto:william.won@gatech.edu
mailto:theo@nvidia.com
mailto:jpark3234@gatech.edu
mailto:vinay.ramakrishnaiah@amd.com

ASTRA-sim Tutorial - Agenda

Time (CST) Topic Presenter
1:00 pm Overview, Introduction to Distributed ML Tushar Krishna (Georgia Tech)
1:40 pm Chakra Execution Trace, ASTRA-sim Workload Layer Taekyung Heo (NVIDIA)
2:20 pm ASTRA-sim System Layer and Network Layer William Won (Georgia Tech/AMD)
3:00 pm Coffee Break
3:30 pm Demo: Chakra and ASTRA-sim Joongun Park (Georgia Tech)
4:10 pm ASTRA-sim New Features Vinay Ramakrishnaiah (AMD)
4:40 pm ASTRA-sim Wiki and Validation William Won (Georgia Tech/AMD)
4:50 pm Closing Remarks Tushar Krishna (Georgia Tech)

Tutorial Website
includes agenda, slides, ASTRA-sim installation instructions (via source + docker image)
https://astra-sim.qithub.io/tutorials/micro-2024

Attention: Tutorial is being recorded

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

https://astra-sim.github.io/tutorials/

Al has become a distributed system problem!

Some key facts about GPT-4:

Total parameters — ~1.8 trillion (over 10x more than GPT-3)

e Architecture — Uses a mixture of experts (MoE) model to improve scalability

e Training compute —ITrained on ~25,000 Nvidia A100 GPUs pver 90-100 days

* Training data — Trained on a dataset of ~13 trillion tokens

* [Inference compute —|Runs on clusters of 128 A100 GPU4 for efficient deployment

Context length — Supports up to 32,000 tokens of context

Ph.D. Thesis Proposal William Won | School of CS | Georgia Institute of Technology

Sep 23,2024

Trend 1: Large ML Models

* ML models are scaling at an unprecedented rate

Frontier models

26 _|
10 Frontier
10% - Outliers
1022_

6.7x/year
\ |

1018—

Training compute (FLOP)

10™

10™ 7]

| I | ! ! | ! |
2010 2012 2014 2016 2018 2020 2022 2024

https://epochai.org/trends

Ph.D. Thesis Proposal William Won | School of CS | Georgia Institute of Technology Sep 23,2024

Trend 2: Moore's Law

e Cannot simply rely on device scaling

Ph.D. Thesis Proposal

Computational
performance

135 x/year

The amount of FLOP/s for GPUs
in FP32 precision is growing at
1.35x per year. A similar trend is
observed for FP16.

90% confidence interval: 1.31x to
1.40x.

I Memory capacity Likely

12 x/year

DRAM capacity (Byte) is growing
by 1.2x per year.

90% confidence interval: 1.1x to
1.3x.

I Memory bandwidth

1 1 8 x/year

DRAM bandwidth in Byte/s is
growing by 1.18x per year.

90% confidence interval: 1.14x to
1.24x.

William Won | School of CS | Georgia Institute of Technology

Likely

®

Sep 23,2024

Trend 3: Training Dataset

* Huge training dataset

Effective stock (number of tokens)

EStimated StOCk Of human" _________________________._____:::::_.:_._-:_-:_-_-:_-_-_-_-;.-:::::::-'::
1015
1014
Dataset sizes used to train T
notable LLMs; 95% Cl ™\ . Lial P
1013 I z _oco2t] ot -
_______ DBRX ~2028
_________ __Faicon-180B Median date of full
il stock use; 80% CI
1012 ____________ ’
~2027
GPT-3 Median date with 5x
10m [overtraining; 80% ClI
= I I | | | |
2020 2022 2024 2026 2028 2030 2032 2034

Ph.D. Thesis Proposal

Year

William Won | School of CS | Georgia Institute of Technology

Sep 23,2024

Trend 4: Diverse Serving Use Cases

@ e f

Image to Text @

| Popular LLM .)
Chatbots Applications Sentiment Analysis

Data Cleaning k - Anomaly Detection

®

Source: https://markovate.com/blog/applications-and-use-cases-of-llm/

System Implications

* Multiple devices are required to accommodate large-scale ML

* Compute

 |n total, 21 YFLOP for training (GPT-4)
 Single NVIDIA H100 (2 PFLOPS) - 333 years to train

* Memory
e 1.8 trillion parameters (GPT-4)

 Assuming 2B/param, 3.6 TB just to store the model
e H100 HBM (80 GB) - 45 GPUs just to fit the model itself

Ph.D. Thesis Proposal William Won | School of CS | Georgia Institute of Technology Sep 23,2024

HPC Platforms for Distributed ML (aka Al Supercomputers)

And many many more ...
XAl Collossus
 Cerebras Andromeda
e Tesla Dojo

 |BM BlueConnect

TPUv4 y

NVIDIA HGX-H100

SuperPod
Ll | bl

Intel Aurora
Supercomputer

AMD Instinct
Platforms

Ph.D. Thesis Proposal William Won | School of CS | Georgia Institute of Technology Sep 23,2024

Components of Al Platforms

Custom Fabrics

Ph.D. Thesis Proposal

| |

CPU NIC NIC CPU NIC
il s
——— 3 D — } —
— i [U
PCle Switches PCle Switches

https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-syste/

William Won | School of CS | Georgia Institute of Technology

Sep 23,2024

Core of ML Execution

X

ASTRA-sim Tutorial @ MICRO 2024

Result =)

Calculate Loss

Update Model

Tushar Krishna | School of ECE| Georgia Institute of Technology

Inference

Nov 3, 2024

Distributed ML

 Model and/or data should be distributed
e Across different NPUs (Neural Processing Unit)

I
— Result

Tensor Parallelism:

Data Parallelism:

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Communication in Distributed ML

* NPUs should communicate to synchronize data

ASTRA-sim Tutorial @ MICRO 2024

1 Tensor Parallelism

d -

/

(Partial)
Result

Tushar Krishna | School of ECE| Georgia Institute of Technology

send

—

send

\

(Partial)
Result

(Full)
Result

Nov 3, 2024

15
Systems challenges with Distributed Training =

e Communication!
* Inevitable in any distributed algorithm

* What does communication depend on?
* synchronization scheme: synchronous vs. asynchronous.
e parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...

* |s it a problem?
* Depends ... can we hide it behind compute?
 How do we determine this?

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Understanding DL Training design-space

ﬂ | owvmodas | > DLAM, ResiNet-50, Transformer, GNMT

Workload Platform-aware Hybrid, Pipelined Parallelism
Layer
Communication Policy and Pattern Distributed worker, Parameter Server / /
ﬂ Framework-level Scheduling Sync/Async, Blocking/Non-blocking —
o — Abstraction
C

System Communication Mechanism § Compute Topology-aware Collectives, Send/Recv, RP
Layer Design Dataflow, Microarchitecture, Flexibility, Sparsity Support
0 Communication Scheduling LIFO. FIFO. Eusion

ﬂ Messaging/Transport Layer TCP, RDMA (+ GPUDirect RDMA)
Network Endpoint Design and Connectivity . # links, BW per link, architecture (chip/package/board),

NIC offload, compression

Layer
y Hierarchical Fabric Design and Topology Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt
Figure Courtesy: Srinivas Sridharan (NVIDIA

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Distributed Training Stack

. L. Data, Model, Platform Agnostic Hybrid,
Workload Workload Parallelization Strategy Platform-aware Hybrid, Pipelined Parallelism
Layer
Communication Policy and Pattern — > Distributed worker, Parameter Server
ﬂ Framework-level Scheduling —> Sync/Async, Blocking/Non-blocking
S;gm Communication Mechanism || compute | —> Topology-aware Collectives, Send/Recv, RPC
Layer Design | —> pataflow, Microarchitecture, Flexibility, Sparsity Support

O Communication Scheduling > LIFO. FIFO. Fusion
ﬂ Messaging/Transport Layer - —> TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivity # links, BW per link, architecture (chip/package/board),

N::”::k NIC offload, compression
y Hierarchical Fabric Design and Topology Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh
ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA

DNN Models

ResNet

Skip Connection

100*100

Image

o
o 7ol
Max pool, = o o
i * wn
stride =2 =3 2 C4 *
S E n
- .
; \
. \
o | Y : T 7 ;3&}
N o - A - T o~
7 S B BB BEe BiK BEE
3 S EIRSE PR OS] s SEB S
o el e gl &8 [i
SRR EE AREEER
u‘ o m B 8 [f; B wm kW kWl 18
& A A - " = %l %=
gl o 2 I = P R P R® e
| | P | | |
| |
\ |
J

,_
']
— <
I
=
-

Identical ConvNets

ASTRA-sim Tutorial @ MICRO 2024

‘
avg pool

Layer 2 Layer 3 Laver 4

31%1

0

s o
fc 1000

Fully connected

fc 128

DLRM

Pairwise interaction

Output
Probabilities
Transformer :
(. N\
[Add & Norm |
Feed
Forward
4 1 ~\ | Add & Norm I:
g e Mutt-Head
Feed Attention
Forward 7 7 Nx
N —
Nx Add & Norm
f‘" Add & Norm | Vacked
Multi-Head Multi-Head
Attention Attention
AT ") O, T
D — \ & _J)
Positional Position
Encoding 5% Encodin
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Operator Types: CONV2D, Attention, Fully-Connected, ...
Parameter sizes: Millions to Trillions

Tushar Krishna | School of ECE| Georgia Institute of Technology

Embedding Embedding
table 1 table M

Categorical Categorical

feature 1 feature M

Nov 3,2024

Distributed Training Stack

ﬂ DNN Models ——> DLRM, ResNet-50, Transformer, GNMT
.. Data, Model, Platform Agnostic Hybrid,
Workload WU G Platform-aware Hybrid, Pipelined Parallelism
Layer
Communication Policy and Pattern — > Distributed worker, Parameter Server

ﬂ Framework-level Scheduling —> Sync/Async, Blocking/Non-blocking

S Gtem Communication Mechanism || Compute | —> Topology-aware Collectives, Send/Recv, RPC
ys .

Layer — . Design | —> pataflow, Microarchitecture, Flexibility, Sparsity Support
O Communication Scheduling LIFO, FIFO, Fusion

ﬂ Messaging/Transport Layer - TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivi # links, BW per link, architecture (chip/package/board),
Nitwork P g v NIC offload, compression
ayer
y Hierarchical Fabric Design and Topology Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh
ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA

Parallelization Strategies

* The way compute tasks are distributed across different compute
nodes. Multiple ways to split the tasks:
 Split the Minibatch (Data-Parallel)
* Split the Model

* Across Tensors (Tensor-Parallel)
* Across layers: (Pipeline-Parallel)

* This also defines the communication pattern across different nodes.

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Parallelism: Data-Parallel

* Distribute Data across multiple nodes and replicate model (network)
along all nodes. g

NPU1

NPU2

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Parallelism: Data-Parallel

* Distribute Data across multiple nodes and replicate model (network)

along all nodes.
* No communication during the forward pass.

Layer 1 Layer2 ... Layer N

NPU1 D
wo: [T

Flow-per-layer: 1.Compute output -> 2. go to the next layer

Inference l Communicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology

Forward pass

Nov 3,2024

Parallelism: Data-Parallel

* Distribute Data across multiple nodes and replicate model (network)
along all nodes.

e Communicate weight gradients during the backpropagation pass.

* via non-blocking "All Reduce” collective
* Blocking wait at end of backpropogation for collective before forward pass

Layer 1 Layer2 ... Layer N-1 Layer N
— —
— —
Backpropagation

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer

Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

.
Parallelism: Tensor-Parallel

 Distribute Model across all nodes and replicate data along all nodes.

N

NPU1

NPU2

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Parallelism: Tensor-Parallel

 Distribute Model across all nodes and replicate data along all nodes.
« Communicate outputs during the forward pass.

Layer 1 Layer2 ... Layer N

NPU1

D Forward pass

NPU2
Flow-per-layer: 1.Compute output -> 2. issue output gradient comm -> 3.wait for gradient to be finished -> 4. go to the next layer

Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Parallelism: Tensor-Parallel

 Distribute Model across all nodes and replicate data along all nodes
« Communicate input gradients during the backpropagation pass.

Layer 1 Layer 2 Layer N-1 Layer N
— —
| — Backpropagation

Flow-per-layer: 1.Compute input gradient-> 2.issue input gradient comm -> 3.compute weight gradient -> 4. wait for input
gradient -> 5. go to previous layer

Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Parallelism: Pipeline-Parallel

 Distribute DNN layers across all nodes.

NPF 1 N%U 2 NPU N

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3,2024

Parallelism: Pipeline-Parallel

 Distribute DNN layers across all nodes.
« Communicate outputs during the forward pass.

NPU 1

2
=
c
N

[]
&
[]

q q
Layer N
Layer 1 Layer 2 y
Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Parallelism: Pipeline-Parallel

 Distribute DNN layers across all nodes.
 Communicate input gradients during the backpropagation.

NPU 1 : NPU 2 : NPU N
o @ |----- O
| |
| |
Layer 1 Layer 2 ayer
Inference Input gradient Weight gradient Non-Blocking l Blocking
compute compute compute Communicate Communicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Parallelism: Pipeline-Parallel

* Decompose minibatch into microbatches and propagate them to the pipeline
in-order to enhance utilization
e Challenge - bubbles

Fao | For | Faz | Fss| Bas | Baz | Bas | Bao Update

Fzo | For | Fzz | Fas Bos | Boz | Bat | Bao Update

Fio | Fur | Frz | Fs Bis | Biz | Bus | Bug Update
Foo | For | Foz | Fos Bubble Bos | Boz | Bos | Boo | Update

F - forward-pass corresponding to micro-batch #n at device #m.

B .n: back-propagation corresponding to micro-batch #n at device #m.

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

More sophisticated schemes

Pipelined model parallelism

Fully sharded data parallel training

nNnnnnnnrang
o Worker 1 | &&%& \ ‘
N 3
0 g Worker 2 \ AN » ua
N \ N\
: g 0 Worker 3 \\ \
0 0 Worker 4
0 . L
Data Startup State Steady' State
parallellsm > SR
Time (LocaL)
Stage 1 Stage 2 Stage 3 Stage 4 I Forward Pass [| Backward Pass Idle _]
PipeDream (Microsoft)
FSDP (Meta)
= AN N = r Y Memory usage without ZeRO With ZeRO
5| I] e 5 = [o | i
o) ! D O 5 | o) (GD) 5 a Data, II GPU, Data, !II GPU,
:92 Iagwmpw@wi 2= ® q;>-::>
& 15~ 8 5 G H: .
3| | ; 3 - Dato, HEEE Data, HEER
| | - Em il H
E Model g g Model \ Data, GPU, Data, GPU,
_Parallel __ Perallel
2 All-Reduce 2 All-Reduce ore., EERE EE oua,, B g
(forward + backward) (forward + backward)
++ (Mi
MegatronLM (NVIDIA) Zero++ (Microsoft)
Nov 3,2024

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology

Distributed Training Stack

U DNN Models —> DLRM, ResNet-50, Transformer, GNMT
. .. Data, Model, Platform Agnostic Hybrid,
Workload Workload Parallelization Strategy Platform-aware Hybrid, Pipelined Parallelism
Communication Policy and Pattern Distributed worker, Parameter Server
Framework-level Scheduling Sync/Async, Blocking/Non-blocking

S}gm Communication Mechanism || compute | —> Topology-aware Collectives, Send/Recv, RPC

Layer — _ Design | —> pataflow, Microarchitecture, Flexibility, Sparsity Support
O Communication Scheduling LIFO, FIFO, Fusion

ﬂ Messaging/Transport Layer TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivity # links, BW per link, architecture (chip/package/board),
NIC offload, compression

ﬂ Fully-Connected, Hyper-Cube Mesh

Network
Layer

Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Model Parameter Update Mechanisms

Synchronization

Asynchronous

Synchronous

Communication
Handling

Parameter-server

Centralized or
Distributed

Centralized or
Decentralized

Collective-based

N/A

Distributed

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3, 2024

Synchronization: Sync. vs. Async. Training

* Defines when nodes should exchange data
» Affects convergence time

Nodel Node2 Node3 Nodel Node2 Node3
Done Synchronous Done
ﬁ L
Done training most Done
4_
popular
Done Done

4_—* M

Asynchronous Synchronous

Compute Gl COMmMmunicate

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Communication Handling

e Parameter Server

Parameter
Server

Parameter
Server

Node 1 Node2 Node3
Node 1 Node2 Node 3

Step 2: The parameter server
sends the updated model to

Step 1: Each node sends its
model gradients to the

parameter server to be
reduced with other gradients
and update the model

the compute nodes to begin
the new iteration.

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Communication Handling

* Collective-based: Compute Nodes
directly talk to each other to globally

reduce their gradients and update the
model through All-Reduce

communication pattern.

Node 1

Node 2 Node 3

Exchanging Output Activations or Input Gradients:

55\/@/5
\é

broadcast

5\@\ /5/ v
o

gather

@ULV
ANV

scatter

0000
\\/

reduction

€ e

“Collective Communication”

* [t may be required depending on the parallelization strategy (discussed next)
* Handled either via collective based patterns or direct Node-to-Node sends/recvs (no parameter server is used).

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology

(from MPI)

More details later

Nov 3,2024

When are collectives needed?

Param-server Data-parallel: N

Data-parallel: N
Tensor-parallel: Usually® Tensor-parallel: Usually”
Pipeline-Parallel: N Pipeline-Parallel: N

Collective-based Y (All-Reduce) Data-parallel: N Data-parallel: N

Tensor-parallel: Usually® Tensor-parallel: Usually®
Pipeline-Parallel: N Pipeline-Parallel: N
* All-reduce, All-gather, Reduce-scatter, All-to-All

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3,2024

Distributed Training Stack

U

Workload
Layer

]

<

System
Layer

O

U

Network
Layer

{

DNN Models

Workload Parallelization Strategy

Communication Policy and Pattern

Framework-level Scheduling

Communication Mechanism fil Compute
Design

Communication Scheduling

Messaging/Transport Layer

Endpoint Design and Connectivity

Hierarchical Fabric Design and Topology

Network Implementation

—> DLRM, ResNet-50, Transformer, GNMT

Data, Model, Platform Agnostic Hybrid,
Platform-aware Hybrid, Pipelined Parallelism

— > Distributed worker, Parameter Server

—> Sync/Async, Blocking/Non-blocking

Topology-aware Collectives, Send/Recv, RPC
Dataflow, Microarchitecture, Flexibility, Sparsity Support
LIFO, FIFO, Fusion

TCP, RDMA (+ GPUDirect RDMA)

links, BW per link, architecture (chip/package/board),
NIC offload, compression

Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

—> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA

Training: Forward Pass

* In forward pass, each DNN layer computes Output Activation

* From Input Activation (=output activation from last layer)
 And Model Weights
e Commonly through GEMM (Matrix Multiplication)

K N
N
o | =
Input Model Output
Activation Weight Activation

(Input Activation of Layer i + 1)

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3,2024

Training: Backward Pass

* In backward pass, each DNN layer computes:
* Weight Gradient: to update model weights
 Input Gradient: required to calculate weight gradient of layer (i - 1)
e Commonly GEMM operations

N K K
M N o
Input
Activation Input Weight Input Model Input
(Transpose) Gradient Gradient of Layer i Gradient Weight Gradient
of Layeri+1 of Layer (i+1) (Transpose) of Layeri

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Compute Efficiency Depends on Data Reuse

Attainable Performance

(GFLOPS)

Floating Point
Ops / Second

Compute Bound => Throughput bound by number of compute units

A

/ Mem
0 bound
’ region

Peak Compute Performance
(Depends on number of PEs)

Compute
bound
region

v

FLOPs/Byte
Floating Point Ops / Byte

Memory Bound => Throughput bound by Memory BW

FC’s compute utilization can often be
increased by increasing batch size.

CONV usually have good
compute utilization.

140 1 BERT TrXL XM __ XIM \
120 - Nl e’
100 i Compute-bound (Potential full compute utilization)
g Models Batch Operator
E 80 BERT L/A w
5 FC ®
g . s TrXL =
> 801 (¥ B=1 | (k//v/0)
[/ i (light color), Fe
4 NWCWTO{‘\/ | B=128
40 | XLM
TrXL_A / (:Jound (dark color) (FF1/FF2)
' \ (compute
BERZTO I\ / under ResNet50 SRR +
;‘ utilization) B=128
0\ 100 200 300 400 500 600

\

Operation Intensity (FLOP/Byte)

L/A operator is seriously memory-bounded. Packing larger batch size
does not help increase its performance. More advanced trick is needed.

Transformer models are heavily memory bound

(Source: Kao et al, FLAT: An Optimized Dataflow for
Mitigating Attention Bottlenecks, ASPLOS 2022)

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3, 2024

Effect of Enhanced Compute Efficiency on
Communication

ResNet-50

100%
g 80%
o 60%
=
< 40%
o
= 20%
0%
0.5X 1X 2X
Compute power
m Compute time = Exposed communication
3D torus with total of 32 Compute Capability

NPUs (2X4X4)

S. Rashidi et al.,"ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms”, ISPASS 2020

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Distributed Training Stack

U DNN Models —> DLRM, ResNet-50, Transformer, GNMT
Workload |___"Vorkload Parallelization Strategy g ?f:t?é)r“r”n?iiv'gzaﬁffé?fg?pﬁﬂig ézrrigl’lelism
aver Communication Policy and Pattern — > Distributed worker, Parameter Server
ﬂ Framework-level Scheduling —> Sync/Async, Blocking/Non-blocking
S)gm Compute | —> Topology-aware Collectives, Send/Recv, RPC
Layer [|| Pesi80 | —> Dataflow, Microarchitecture, Flexibility, Sparsity Support

O Communication Scheduling LIFO. FIFO. Eusion

ﬂ Messaging/Transport Layer - TCP, RDMA (+ GPUDirect RDMA)

Endpoint Design and Connectivity # links, BW per link, architecture (chip/package/board),
N‘;;w::k NIC offload, compression
Fully-Connected, Hyper-Cube Mesh
ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA

Communication in Distributed ML

* NPUs should communicate to synchronize outcomes

E.g.,

/

1 Tensor Parallelism

< I

(Partial)
Result

—)

send

send

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology

\

(Partial)
Result

(Full)
Result

Nov 3, 2024

Example: Tensor Parallelism

* Each of the NPU produces part of ML activation results
* NPUs then synchronize to recover the full activation result

[1, 6, 2]
Activation (NPU 1)

synchronization | NN L O
BTN ——

[1,6, 2] [-2, 7, 3] [7,-3, 1]

Activation (Full Model)
(inallNPU 1, 2, 3)

[_2; 7; 3]
Activation (NPU 2)

M1 | M2 | M3 nLNENe o BLIE2IES
1 10(11| 1
[7,-3, 1] 2) 2|l 2| 2
Activation (NPU 3) 3 33|33
All-Gather

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Collective Communication “Patterns”

* Used for communication/ synchronization in distributed training/inference

N1 | N2| N3 N1 N2 N3

[1]|(2][(3] 1+2+3

L1 {2]|[[3 | e 1+2+3

L1]|[2][(3] [1+2+3]
Reduce-Scatter

N1 | N2 | N3 N1 N2 N3

(12| 3] 1+2+3|[[1+2+3|[|[1+2+3|

11][2]|[3 |- [1+2+3|[[1+2+3]|1+2+3|

1|2][C3] [1+2+3]|[1+2+3]|[1+2+3]

All-Reduce

N1 | N2 | N3 N1
[1] [1]
[2] wm[2]
[3] [3]
All-Gather

N1 | N2 | N3 N1
28] [
[1]|[2]((S] mumm[2]
2]I3] [3]
All-to-All

* Specific pattern depends on parallelization strategy

N2

(1]
[2]
[3]

EREE

Parallelization Reduce-Scatter All-Gather All-Reduce
Data Parallel v
Tensor Parallel v
Hybrid Parallel v v v
FSDP v v
ZeRO v v

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology

N3

(1]
[2]
[3]

BEEE

Nov 3, 2024

Collective Communication “Algorithms”

* Routing algorithm to implement collective patterns

 Collective communication libraries (CCLs, e.g., NCCL, RCCL, oneCCL)
use diverse collective algorithms to implement collective
communication patterns

 Example All-Reduce Algorithms: Ring, Direct, Halving-Doubling, Rabenseifner,
Double Binary Tree, etc.

* Given a network topology, an efficient algorithm to run collective
communication is called a topology-aware collective algorithm

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Example

ASTRA-sim Tutorial @ MICRO 2024

Physical Topology: Fully Connected

Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3,2024

Collective Algorithm: Ring All-Reduce " N

[1]

N2 | N3 N1

[2]|3]
[2[[3]
[2]|(3]

Reduce-Scatter
[1]((1]

N1|N2|N3 N1
Y £1e1e8
v" All links utilized (sl

— 2]
: a e e e All-Gather
v No congestion No N1 | N2 | NG

N2

N2 [N3

[3] [8]

I%I I%I [3] [1+2+3[1+2+3|[1+2+3
n [1][[2]|[[3] === [{+2+3[[1+2+3]|1+2+3
[A]|2]|(3] [1+2+3][1+2+3]|[1+2+3]

All-Reduce
g I e
2 O O Chunk

All-Gather finished
(All-Reduce finished)

Physical Topology: Ring

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Collective Algorithm: Direct All-Reduce N

[1]

N2 | N3 N1

[2]|3]
[2[[3]
[2]|(3]

Reduce-Scatter
N1 |N2|[N3 N1

[1] [1]
[2]] ==m[2]
[3] [8]

All-Gather

N2

N2
[1]
[2]
[3]

N3
[1]
[2]
[3]

v" All links utilized
v No congestion

N1|N2|N3 N1
[(1][2]l(3] [1+2+3]
[1][[2][[3] === [1+2+3
[|2]|(3] [1+2+3]

All-Reduce

N2
[1+2+3]
1+2+3
[1+2+3]

N3

[1+2+3]
1+2+3
[1+2+3]

All-Gather finished
(All-Reduce finished)

Physical Topology: Fully-Connected

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Collective Algorithm:

N1

Recursive Halving Doubling All-Reduce &l

[1]

N2 | N3 N1

[2]|3]
[2[[3]
[2]|(3]

Reduce-Scatter
N1 |N2|[N3 N1

[1] [1]
[2]] ==m[2]
[3] [8]

All-Gather
N3 N1

N
Iill%llzl [1+2+3]
[1]|[2]|(3 == [{+2+3]
[A]|(2]|(3] [1+2+3]

All-Reduce

N2 N3

N2
[1]
[2]
[3]

N3
[1]
[2]
[3]

v" All links utilized
v No congestion

N2
[1+2+3]
1+2+3
[1+2+3]

N3

[1+2+3]
1+2+3
[1+2+3]

0000 6000 60000 06000

All-Gather finished PO Pl P2 P3
(All-Reduce finished) O O O O
Stepl N4 A

Physical Topology: Switch Step2 N N7 7

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Summary: Basic Collective Algorithms

* No network congestion while running collective communication

Topology-aware Collective

Topology Building Block

Algorithm
1]
E.[!! Ring Ring
3 -]
1]
E‘A‘m]
AL/ FullyConnected Direct
(3]

70N
A B Switch HalvingDoubling

What about other topologies?

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Topology-aware Collective Algorithms

* Optimal collective algorithm heavily depends on network topology
e Simple collective algorithms will not directly map

ANA

Ring Algorithm —

Network Underutilization!!

]

L

[] \ []

Physical Topology: 2D Torus

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Multi-dimensional Collective Algorithm
* Phased approach of Reduce-Scatter and All-Gather

Dim1i
¢ > /(1) Dim 1: Reduce-Scatter
S S (2) Dim 2: Reduce-Scatter
(3) Dim 3: Reduce-Scatter
Dim3: . § . E . (4) Dim 3: All-Gather

(5) Dim 2: All-Gather
(6) Dim 1: All-Gather

.......

- -
ey -
LR

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3, 2024

Distributed Training Stack

U

Workload
Layer

]

<

System
Layer

O

U

Network
Layer

{

DNN Models

Workload Parallelization Strategy

Communication Policy and Pattern

Framework-level Scheduling

Communication Mechanism || Compute

Design

Communication Scheduling
Messaging/Transport Layer -

Endpoint Design and Connectivity

Hierarchical Fabric Design and Topology

Network Implementation

—> DLRM, ResNet-50, Transformer, GNMT

Data, Model, Platform Agnostic Hybrid,
Platform-aware Hybrid, Pipelined Parallelism

— > Distributed worker, Parameter Server

—> Sync/Async, Blocking/Non-blocking

—> Topology-aware Collectives, Send/Recv, RPC
> Dataflow, Microarchitecture, Flexibility, Sparsity Support
LIFO, FIFO, Fusion

TCP, RDMA (+ GPUDirect RDMA)

links, BW per link, architecture (chip/package/board),
NIC offload, compression

Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

—> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (Facebook

Networking Technologies

Chiplets /
Advanced Packaging
/ Wafercale

Rack-scale Interconnects
(e.g., Nvlink/XeLink/..)

¥

Infiniband/
Ethernet

'/> Network
~
NPU(([NPU NPU(([NPU NPU([NPU NPU([NPU| [NPU| |NPU NPU(([NPU NPU(([NPU NPU(([NPU

ASTRA-sim Tutorial @ MICRO 2024

Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3, 2024

Hierarchical Network Architectures

g Datacenter Network 2

Network -7\ /
% Intra-Node Network }

wday miey sheg

\S

C1C]
C1C]
C1C]
C1C]

OO0 |

o o Y
OOg s

OO e
m|mk y
OO

L0

HBM NPU . CPU . NIC Scale-_up Scale-put
Fabric Fabric

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Scale up = scale out m
Examples

Cerebras
NVIDIA Google
- WLink =& L SwarmX Interconnect cen
o = o = .. 18 switches ... Switch Swarmx =
External The HLS-1 MemoryX E——— cs2
Optical seatiie = e
- . Csj
J &= —
| e eREEE ., EEEEER009092 B | G vy | cs-2
[TIT] [TIT] [TIT] NVSwitch
NVLink | AReRRAR
-------- sunnunnn| .. 32 servers (256 GPUs) ... susmssan| H100 = N 7
NVswitch > Infiniband 3D Electrical Torus = Optical Wafer-scale = SwarmX Tree
AMD B Tensorrent Tesla

Galaxy - Supercomputer Topology V1 Dojo Training Matrix

a ” Emerald Pools
= -) —
= g 3
4 el
- A

Infiniti = Infiniti NVlink = RoCE On-package Mesh = off-chip mesh On-package Mesh = Ethernet

Clear Creek

|

Angels Landing

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

Distributed Training Stack

U

Workload
Layer

]

<

System
Layer

O

U

Network
Layer

DNN Models

Workload Parallelization Strategy

Communication Policy and Pattern

Framework-level Scheduling

Communication Mechanism || Compute

Design

Communication Scheduling
Messaging/Transport Layer -

Endpoint Design and Connectivity

Hierarchical Fabric Design and Topology

ﬂ Network Implementation

—> DLRM, ResNet-50, Transformer, GNMT

Data, Model, Platform Agnostic Hybrid,
Platform-aware Hybrid, Pipelined Parallelism

— > Distributed worker, Parameter Server

—> Sync/Async, Blocking/Non-blocking

—> Topology-aware Collectives, Send/Recv, RPC
> Dataflow, Microarchitecture, Flexibility, Sparsity Support
LIFO, FIFO, Fusion

TCP, RDMA (+ GPUDirect RDMA)

links, BW per link, architecture (chip/package/board),
NIC offload, compression

Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

—> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (NVIDIA

Example: Infiniband vs RoCE

End-to-end delay
Flow Control Mechanism

Forwarding Mode

Load Balancing Mode

Network Configuration

=
§
<

ASTRA-sim Tutorial @ MICRO 2024

InfiniBand RoCEv2

2us Sus
Credit-based flow control mechanism PFC/ECN, DCQCN
Forwarding based on Local ID IP-based Forwarding
Packet-by-Packet Adaptive Routing ECMP Routing
e lchlaka bbbl Route Convergence
Zero configuration through UFM Manual Configuration

InfiniBand VS. RoCE v2 technical comparison

Tushar Krishna | School of ECE| Georgia Institute of Technology

Nov 3,2024

Summary and Takeaways

* Design of Distributed Al/ML Platforms is an ongoing open-research
area

* Many emerging supercomputing systems being designed specifically
for this problem!

e Co-design of algorithm and system offers high opportunities for
speedup and efficiency

ASTRA-sim Tutorial @ MICRO 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology Nov 3, 2024

	Slide 1
	Slide 2: Welcome
	Slide 3: ASTRA-sim Tutorial - Agenda
	Slide 4: AI has become a distributed system problem!
	Slide 5: Trend 1: Large ML Models
	Slide 6: Trend 2: Moore's Law
	Slide 7: Trend 3: Training Dataset
	Slide 8: Trend 4: Diverse Serving Use Cases
	Slide 9: System Implications
	Slide 10: HPC Platforms for Distributed ML (aka AI Supercomputers)
	Slide 11: Components of AI Platforms
	Slide 12: Core of ML Execution
	Slide 13: Distributed ML
	Slide 14: Communication in Distributed ML
	Slide 15: Systems challenges with Distributed Training
	Slide 16: Understanding DL Training design-space
	Slide 17: Distributed Training Stack
	Slide 18: DNN Models
	Slide 19: Distributed Training Stack
	Slide 20: Parallelization Strategies
	Slide 21: Parallelism: Data-Parallel
	Slide 22: Parallelism: Data-Parallel
	Slide 23: Parallelism: Data-Parallel
	Slide 24: Parallelism: Tensor-Parallel
	Slide 25: Parallelism: Tensor-Parallel
	Slide 26: Parallelism: Tensor-Parallel
	Slide 27: Parallelism: Pipeline-Parallel
	Slide 28: Parallelism: Pipeline-Parallel
	Slide 29: Parallelism: Pipeline-Parallel
	Slide 30: Parallelism: Pipeline-Parallel
	Slide 31: More sophisticated schemes
	Slide 32: Distributed Training Stack
	Slide 33: Model Parameter Update Mechanisms
	Slide 34: Synchronization: Sync. vs. Async. Training
	Slide 35: Communication Handling
	Slide 36: Communication Handling
	Slide 37: When are collectives needed?
	Slide 38: Distributed Training Stack
	Slide 39: Training: Forward Pass
	Slide 40: Training: Backward Pass
	Slide 41: Compute Efficiency Depends on Data Reuse
	Slide 42: Effect of Enhanced Compute Efficiency on Communication
	Slide 43: Distributed Training Stack
	Slide 44: Communication in Distributed ML
	Slide 45: Example: Tensor Parallelism
	Slide 46: Collective Communication “Patterns”
	Slide 47: Collective Communication “Algorithms”
	Slide 48: Example
	Slide 49: Collective Algorithm: Ring All-Reduce
	Slide 50: Collective Algorithm: Ring All-Reduce
	Slide 51: Collective Algorithm: Ring All-Reduce
	Slide 52: Collective Algorithm: Ring All-Reduce
	Slide 53: Collective Algorithm: Ring All-Reduce
	Slide 54: Collective Algorithm: Ring All-Reduce
	Slide 55: Collective Algorithm: Ring All-Reduce
	Slide 56: Collective Algorithm: Ring All-Reduce
	Slide 57: Collective Algorithm: Ring All-Reduce
	Slide 58: Collective Algorithm: Ring All-Reduce
	Slide 59: Collective Algorithm: Ring All-Reduce
	Slide 60: Collective Algorithm: Ring All-Reduce
	Slide 62: Collective Algorithm: Direct All-Reduce
	Slide 63: Collective Algorithm: Direct All-Reduce
	Slide 64: Collective Algorithm: Direct All-Reduce
	Slide 65: Collective Algorithm: Direct All-Reduce
	Slide 66: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 67: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 68: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 69: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 70: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 71: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 72: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 73: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 74: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 75: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 76: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 77: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 78: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 79: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 80: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 81: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 82: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 83: Collective Algorithm: Recursive Halving Doubling All-Reduce
	Slide 84: Summary: Basic Collective Algorithms
	Slide 85: Topology-aware Collective Algorithms
	Slide 86: Multi-dimensional Collective Algorithm
	Slide 87: Distributed Training Stack
	Slide 88: Networking Technologies
	Slide 89: Hierarchical Network Architectures
	Slide 90: Examples
	Slide 91: Distributed Training Stack
	Slide 92: Example: Infiniband vs RoCE
	Slide 93: Summary and Takeaways
	Slide 94: Backup
	Slide 95: Data Parallel Training (Backward Pass)
	Slide 96: Parallelism: Hybrid Parallel

