

https://astra-sim.github.io

https://github.com/mlcommons/chakra

ASTRA-sim Tutorial @MICRO 2024 November 3, 2024

ASTRA-sim and Chakra Tutorial: Introduction to Distributed ML

Tushar Krishna Associate Professor School of ECE, Georgia Institute of Technology tushar@ece.gatech.edu

Welcome

Presenters

Tushar Krishna Associate Professor, ECE Georgia Tech tushar@ece.gatech.edu

william.won@gatech.edu

Joongun Park Post Doctoral Researcher Georgia Tech

jpark3234@gatech.edu

Taekyung Heo Senior HPC Middleware Developer, NVIDIA theo@nvidia.com

Vinay Ramakrishnaiah Senior Member of Technical Staff. AMD vinay.ramakrishnaiah@amd.com

Contributors & Collaborators

Georgia Tech Jinsun Yoo Changhai Man	Meta Saeed Rashidi Louis Feng	NVIDIA Srinivas Sridharan Intel Sudarshan Srinivasan	AMD Ruchi Shah Brad Beckmann	ML Commons *7.31.323 - Ast Francesce, 54 Chakra: Advancing Benchmarking and Co- design for Future Al Systems Averdending Online, execution traces and bedreadeds working group	+ many more industry/academic
Ziwei Li Divya Kiran Kadiyala	Sheng Fu Brian Coutinho Darshan Sanghani Adi Gangidi		Furkan Eris +more		researchers & engineers

ASTRA-sim Tutorial - Agenda

Time (CST)	Торіс	Presenter
1:00 pm	Overview, Introduction to Distributed ML	Tushar Krishna (Georgia Tech)
1:40 pm	Chakra Execution Trace, ASTRA-sim Workload Layer	Taekyung Heo (NVIDIA)
2:20 pm	ASTRA-sim System Layer and Network Layer	William Won (Georgia Tech/AMD)
3:00 pm	Coffee Break	
3:30 pm	Demo: Chakra and ASTRA-sim	Joongun Park (Georgia Tech)
4:10 pm	ASTRA-sim New Features	Vinay Ramakrishnaiah (AMD)
4:40 pm	ASTRA-sim Wiki and Validation	William Won (Georgia Tech/AMD)
4:50 pm	Closing Remarks	Tushar Krishna (Georgia Tech)

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/micro-2024</u>

Attention: Tutorial is being recorded

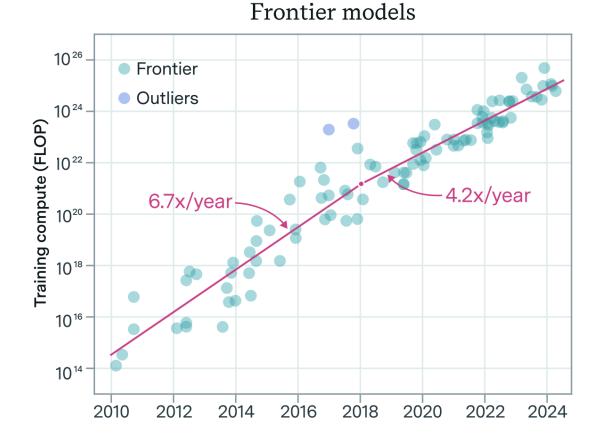
AI has become a distributed system problem!

Some key facts about GPT-4:

- **Total parameters** ~1.8 trillion (over 10x more than GPT-3)
- Architecture Uses a mixture of experts (MoE) model to improve scalability
- Training compute Trained on ~25,000 Nvidia A100 GPUs over 90-100 days
- Training data Trained on a dataset of ~13 trillion tokens
- Inference compute Runs on clusters of 128 A100 GPUs for efficient deployment
- Context length Supports up to 32,000 tokens of context

Trend 1: Large ML Models

• ML models are scaling at an unprecedented rate

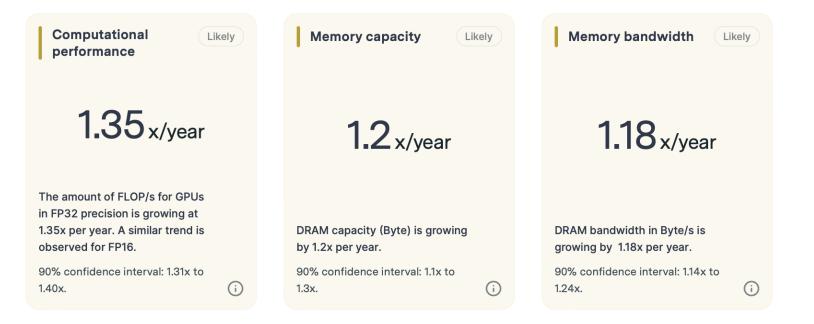


https://epochai.org/trends

5

Trend 2: Moore's Law

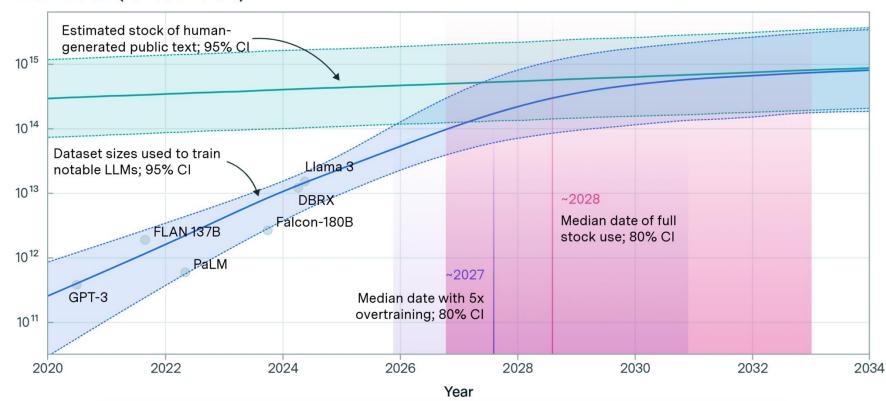
Cannot simply rely on device scaling



https://epochai.org/trends

Trend 3: Training Dataset

• Huge training dataset



Effective stock (number of tokens)

https://epochai.org/trends

Trend 4: Diverse Serving Use Cases

Source: https://markovate.com/blog/applications-and-use-cases-of-llm/

System Implications

• Multiple devices are required to accommodate large-scale ML

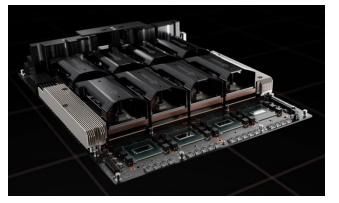
• Compute

- In total, 21 YFLOP for training (GPT-4)
- Single NVIDIA H100 (2 PFLOPS) \rightarrow 333 years to train

• Memory

- **1.8 trillion** parameters (GPT-4)
- Assuming 2B/param, **3.6 TB** just to store the model
- H100 HBM (80 GB) \rightarrow 45 GPUs just to *fit* the model itself

HPC Platforms for Distributed ML (aka Al Supercomputers)



NVIDIA HGX-H100 SuperPod

AMD Instinct Platforms

TPUv4

Google Cloud

Intel Aurora Supercomputer

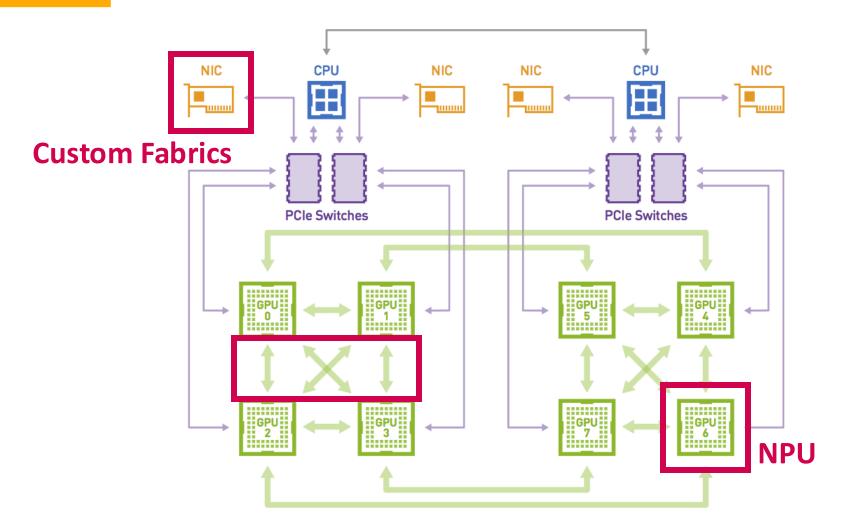
And many many more ...

- xAI Collossus
- Cerebras Andromeda lacksquare
- Tesla Dojo
- **IBM BlueConnect**

...

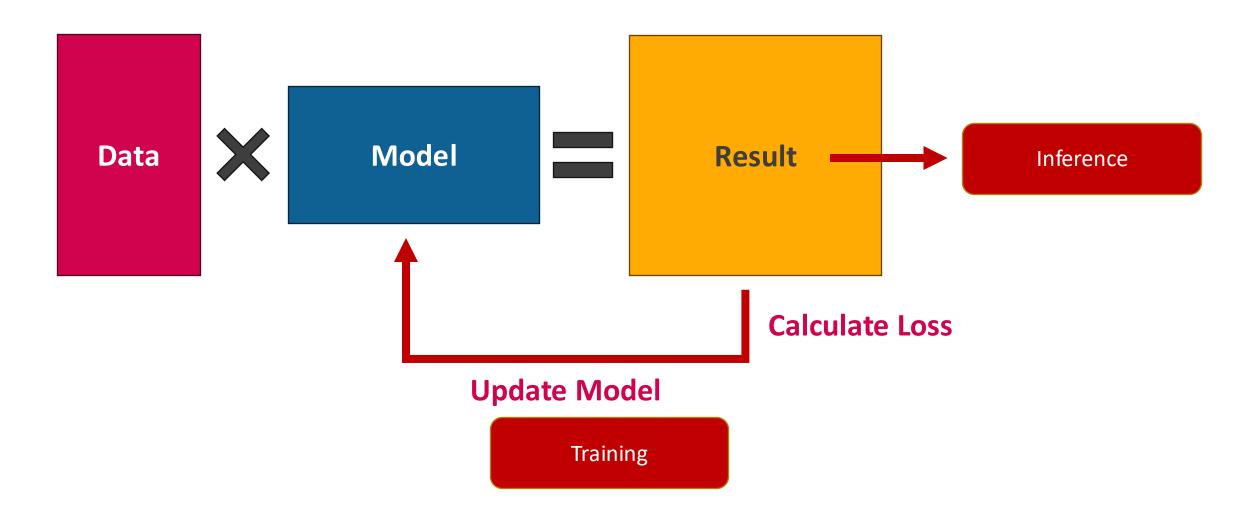
10

Components of AI Platforms



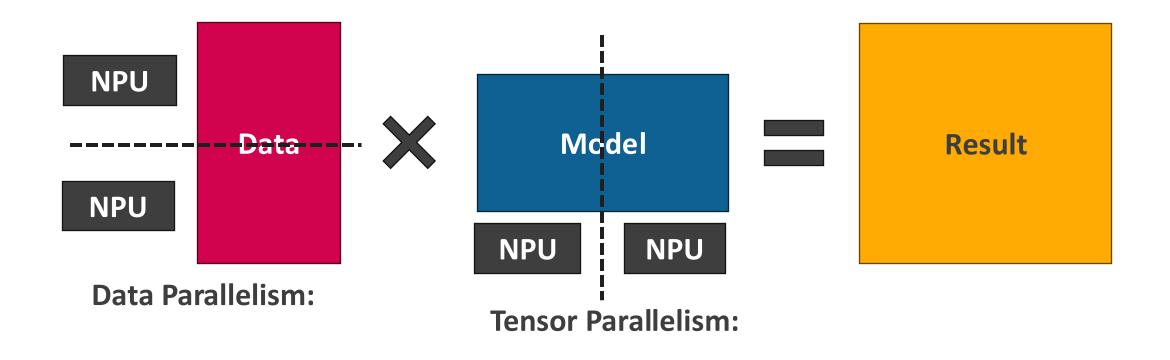
https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-syste/

Core of ML Execution



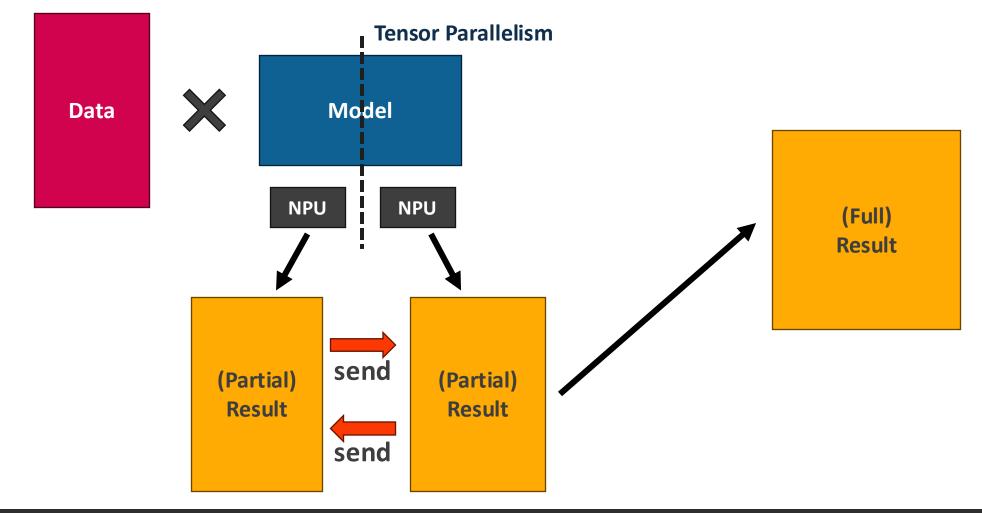
Distributed ML

- Model and/or data should be distributed
 - Across different NPUs (Neural Processing Unit)



Communication in Distributed ML

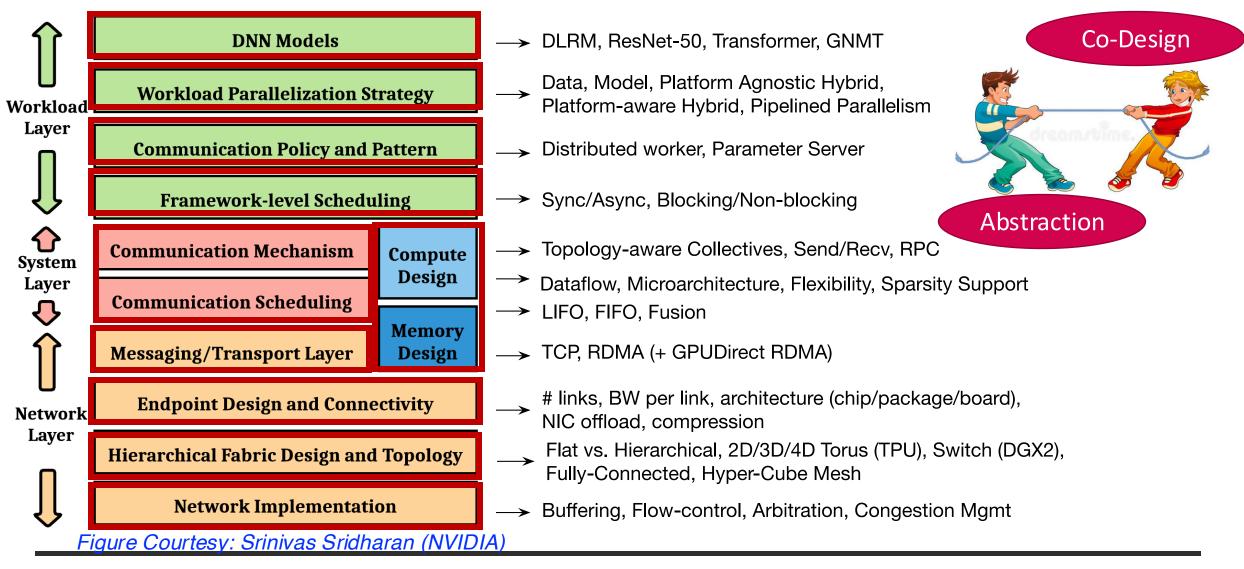
• NPUs should communicate to synchronize data



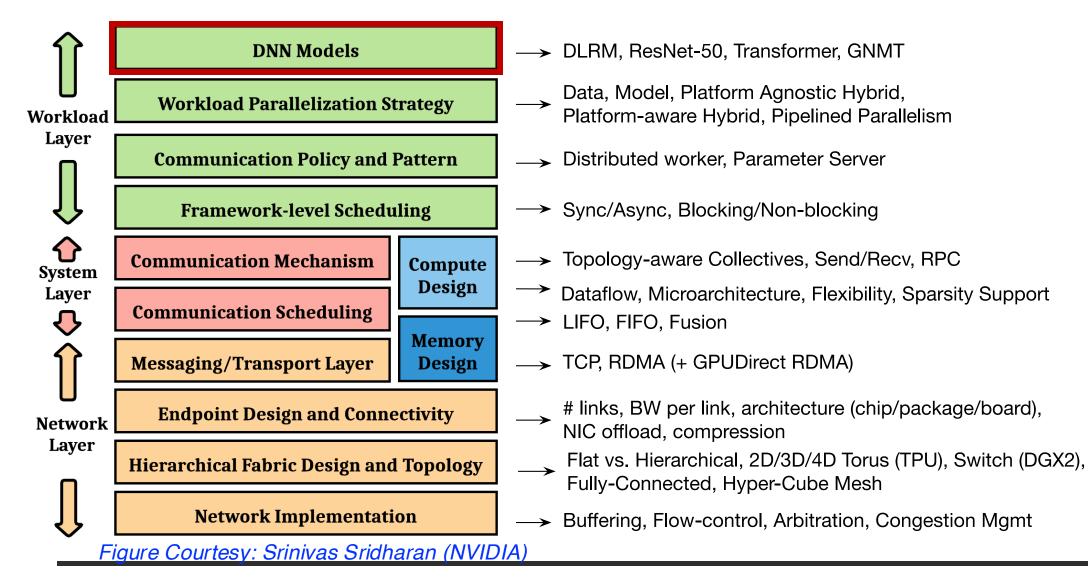
Systems challenges with Distributed Training

- Communication!
 - Inevitable in any distributed algorithm
- What does communication depend on?
 - synchronization scheme: synchronous vs. asynchronous.
 - parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...
- Is it a problem?
 - Depends ... can we hide it behind compute?
 - How do we determine this?

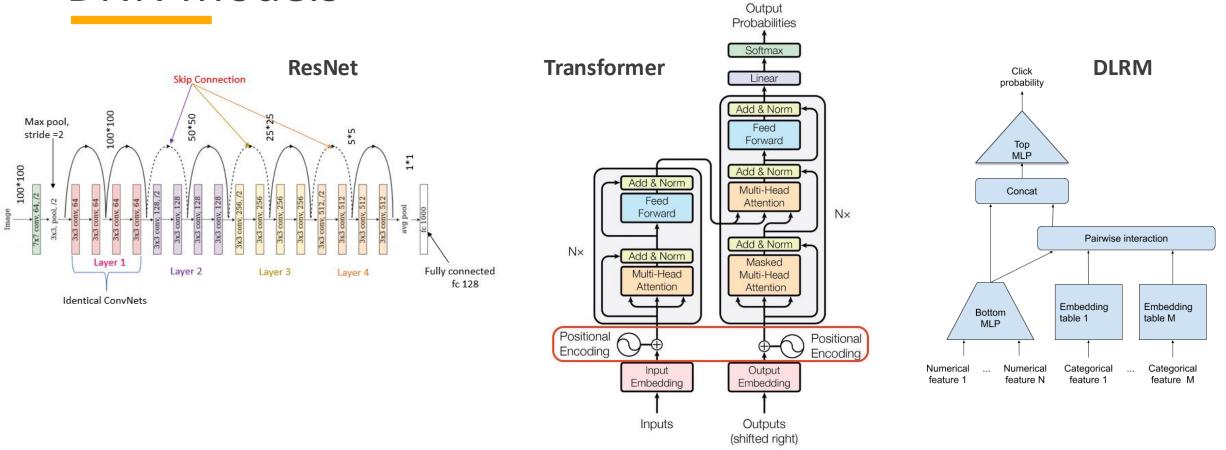
Understanding DL Training design-space



Distributed Training Stack



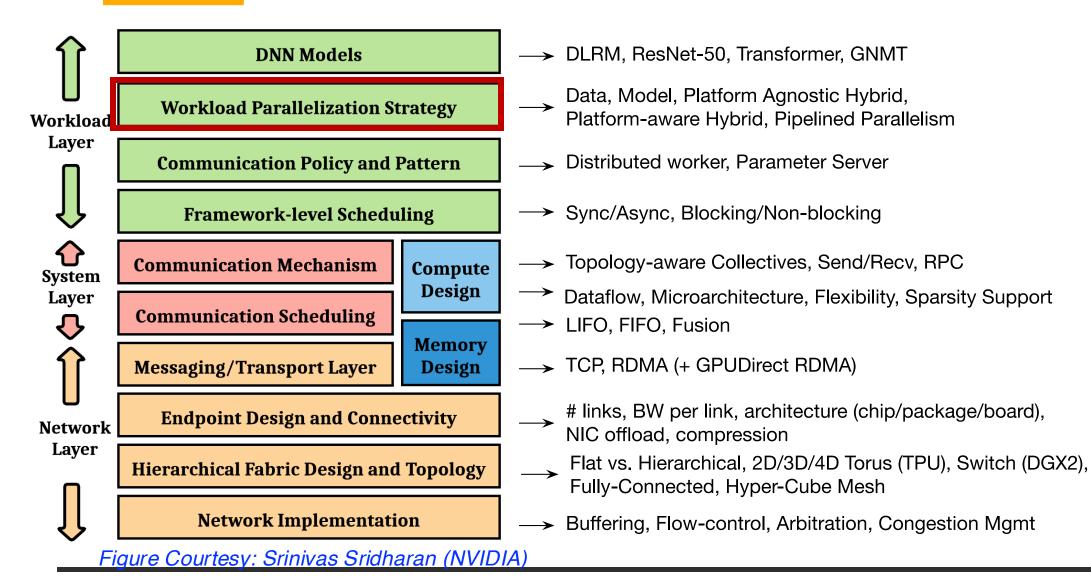
DNN Models



Operator Types: CONV2D, Attention, Fully-Connected, ...

Parameter sizes: Millions to Trillions

Distributed Training Stack



Parallelization Strategies

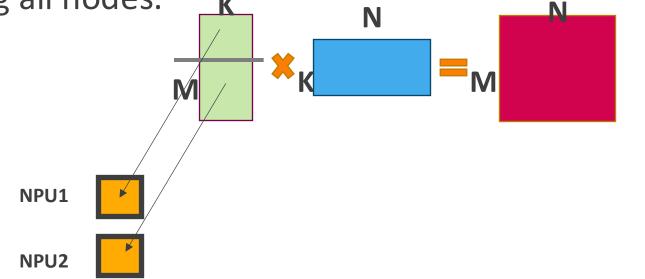
- The way compute tasks are distributed across different compute nodes. Multiple ways to split the tasks:
 - Split the Minibatch (Data-Parallel)
 - Split the Model
 - Across Tensors (Tensor-Parallel)
 - Across layers: (Pipeline-Parallel)

• This also defines the communication pattern across different nodes.

....

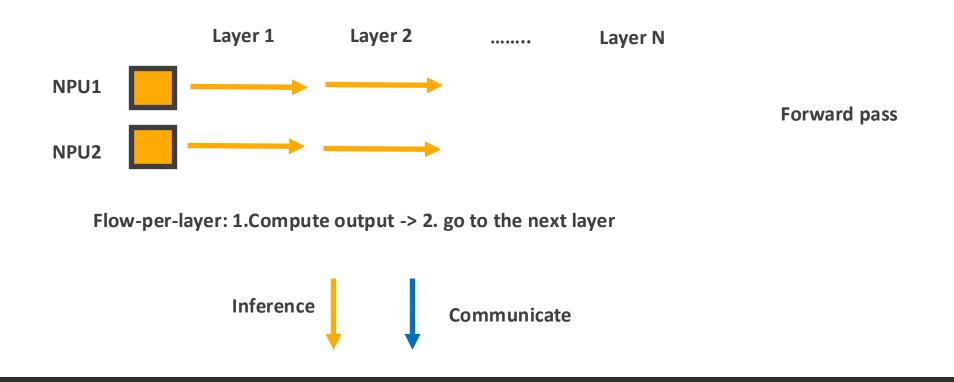
Parallelism: Data-Parallel

 Distribute Data across multiple nodes and replicate model (network) along all nodes.



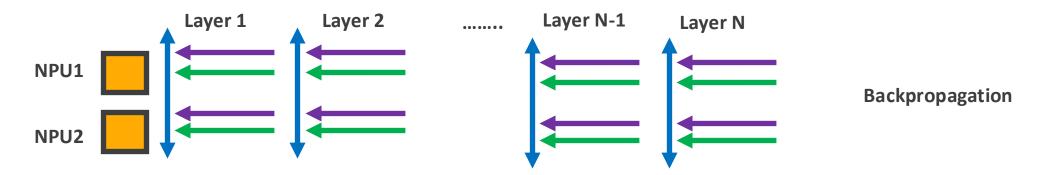
Parallelism: Data-Parallel

- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- No communication during the forward pass.



Parallelism: Data-Parallel

- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- Communicate weight gradients during the backpropagation pass.
 - via non-blocking "All Reduce" collective
 - Blocking wait at end of backpropogation for collective before forward pass

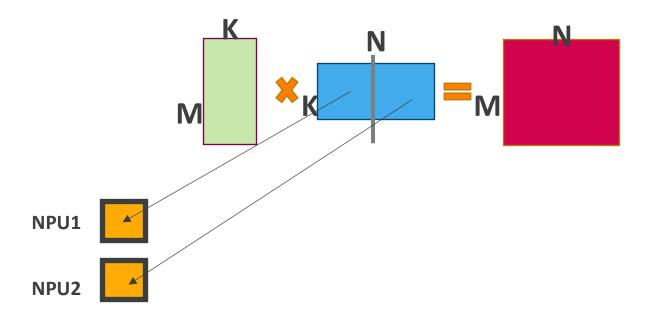


Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer



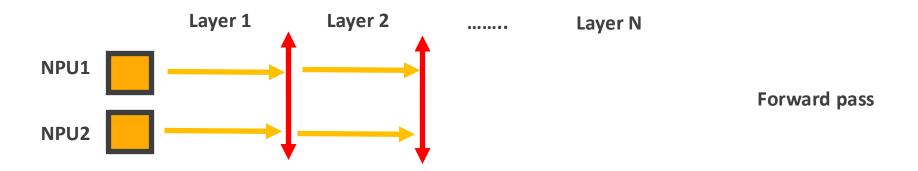
Parallelism: Tensor-Parallel

• Distribute Model across all nodes and replicate data along all nodes.

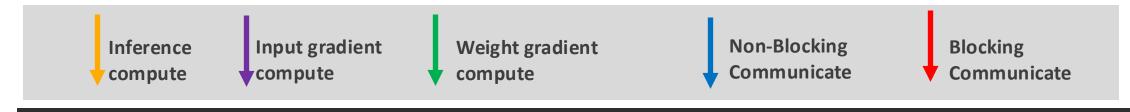


Parallelism: Tensor-Parallel

- Distribute Model across all nodes and replicate data along all nodes.
- **Communicate outputs** during the forward pass.

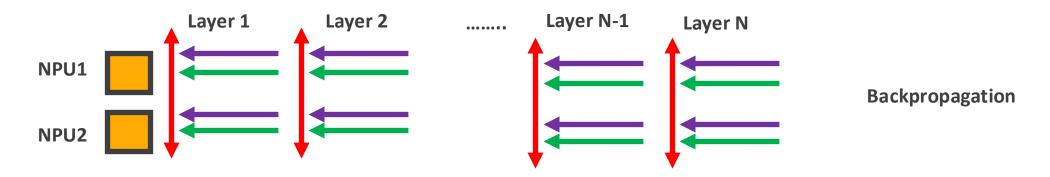


Flow-per-layer: 1.Compute output -> 2. issue output gradient comm -> 3.wait for gradient to be finished -> 4. go to the next layer



Parallelism: Tensor-Parallel

- Distribute Model across all nodes and replicate data along all nodes
- Communicate input gradients during the backpropagation pass.

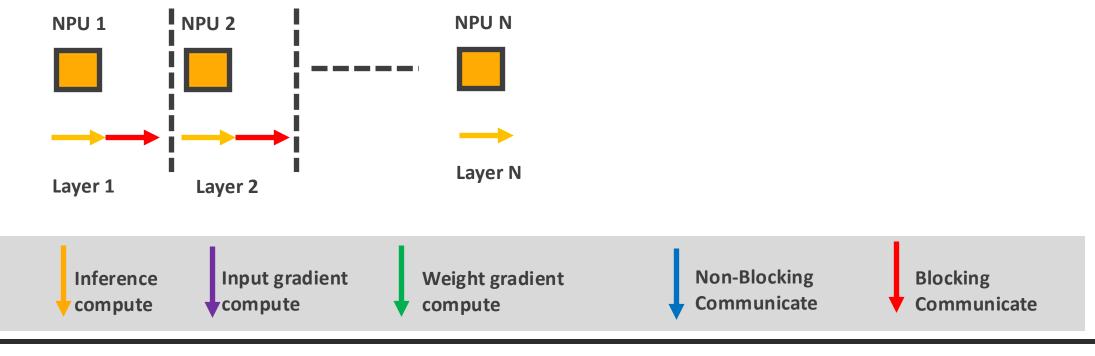


Flow-per-layer: 1.Compute input gradient-> 2.issue input gradient comm -> 3.compute weight gradient -> 4. wait for input gradient -> 5. go to previous layer

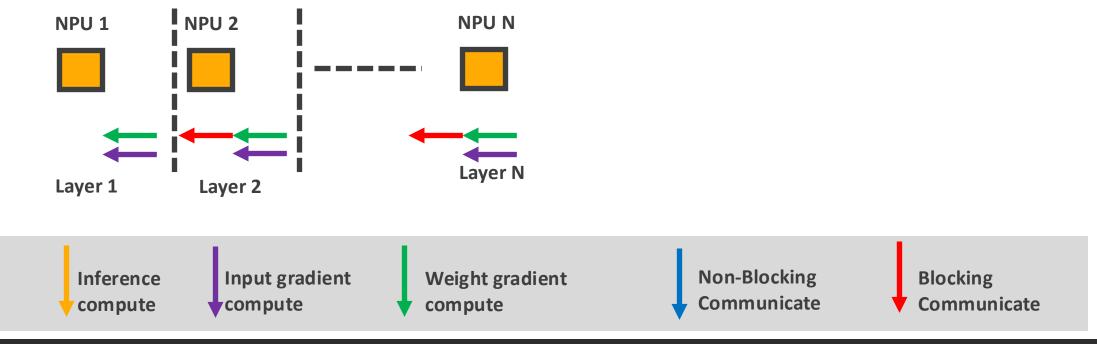
• Distribute DNN layers across all nodes.



- Distribute DNN layers across all nodes.
- Communicate outputs during the forward pass.



- Distribute DNN layers across all nodes.
- Communicate input gradients during the backpropagation.

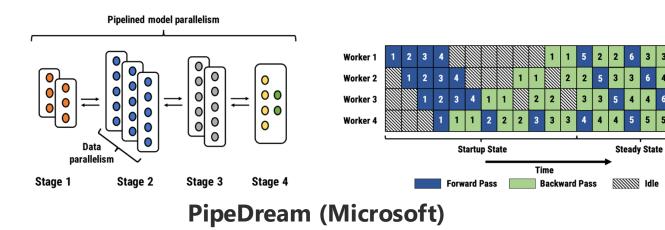


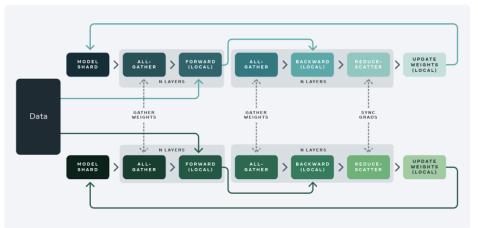
- Decompose minibatch into microbatches and propagate them to the pipeline in-order to enhance utilization
 - Challenge bubbles

			F _{3,0}	F _{3,1}	F _{3,2}	F _{3,3}	B 3,3	B 3,2	B 3,1	B 3,0				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B 2,3	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F 1,0	F 1,1	F 1,2	F _{1,3}	ſ				B 1,3	B 1,2	B _{1,1}	B 1,0		Update
F _{0,0}	F 0,1	F 0,2	F 0,3		,	Bubble			В _{0,3}	B _{0,2}	B _{0,1}	B 0,0	Update	

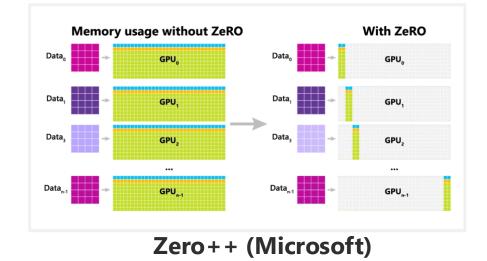
- F $_{m,n}$: forward-pass corresponding to micro-batch #n at device #m.
- B _{m,n}: back-propagation corresponding to micro-batch #n at device #m.

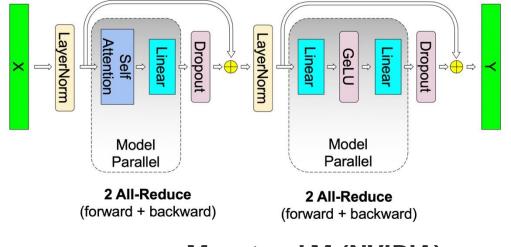
More sophisticated schemes





FSDP (Meta)

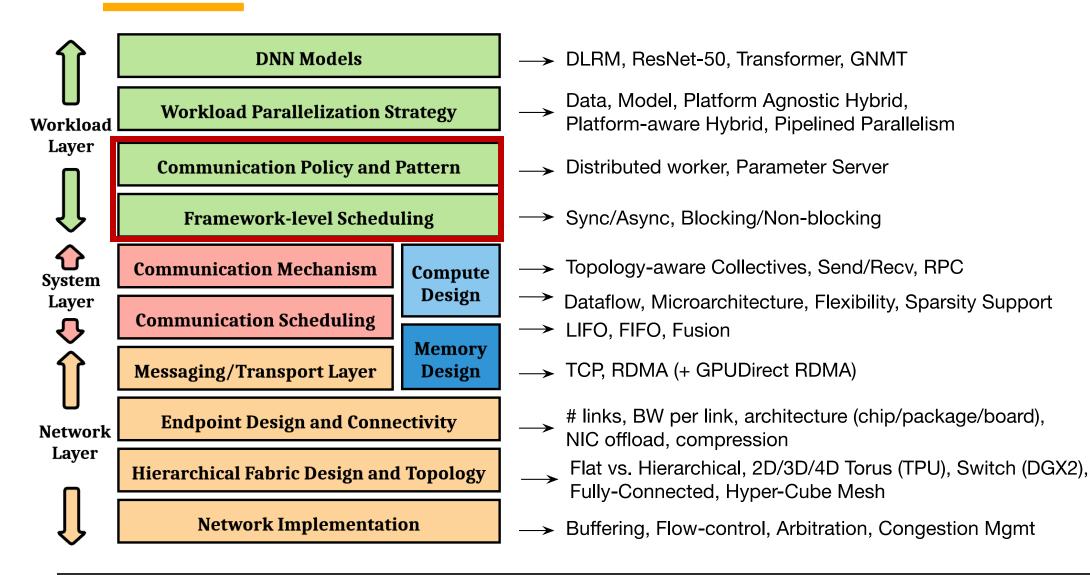




MegatronLM (NVIDIA)

Idle 🕅

Distributed Training Stack

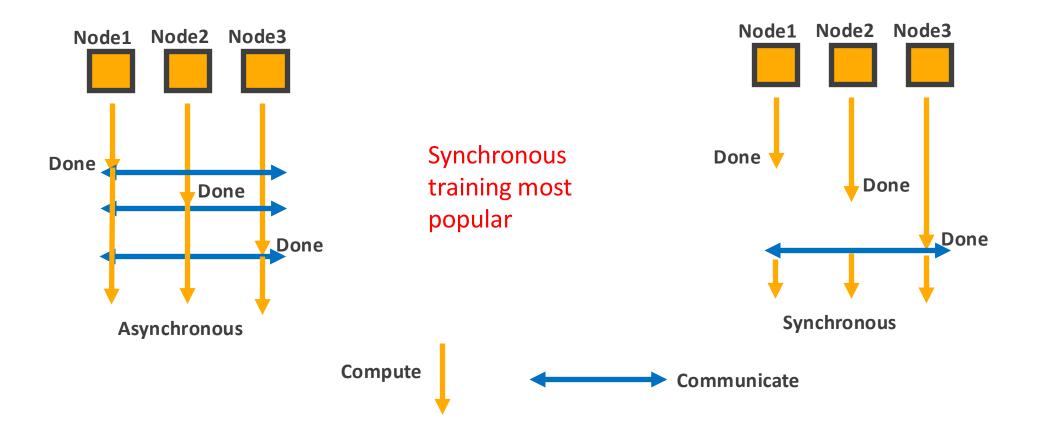


Model Parameter Update Mechanisms

		Synchronization				
		Asynchronous	Synchronous			
Communication Handling	Parameter-server	Centralized or Distributed	Centralized or Decentralized			
	Collective-based	N/A	Distributed			

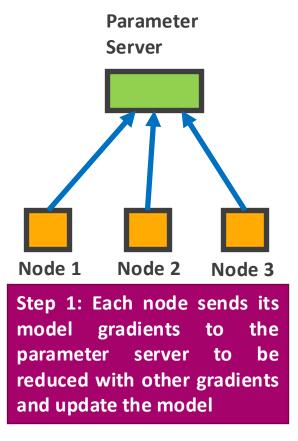
Synchronization: Sync. vs. Async. Training

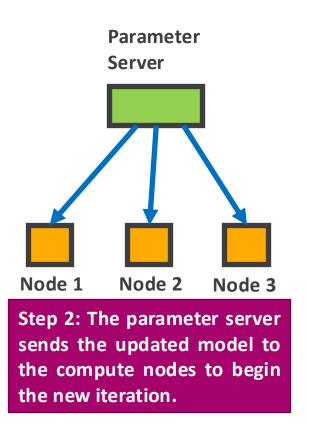
- Defines when nodes should exchange data
 - Affects convergence time



Communication Handling

Parameter Server



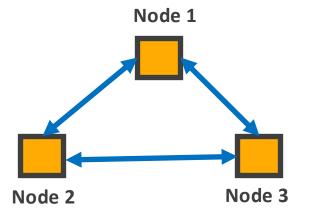


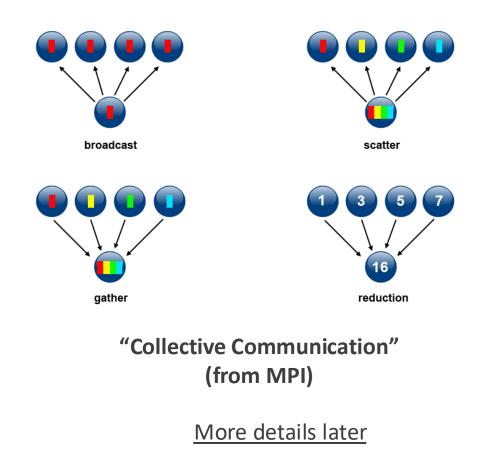
ASTRA-sim Tutorial @ MICRO 2024

35

Communication Handling

• Collective-based: Compute Nodes directly talk to each other to globally reduce their gradients and update the model through *All-Reduce* communication pattern.





Exchanging Output Activations or Input Gradients:

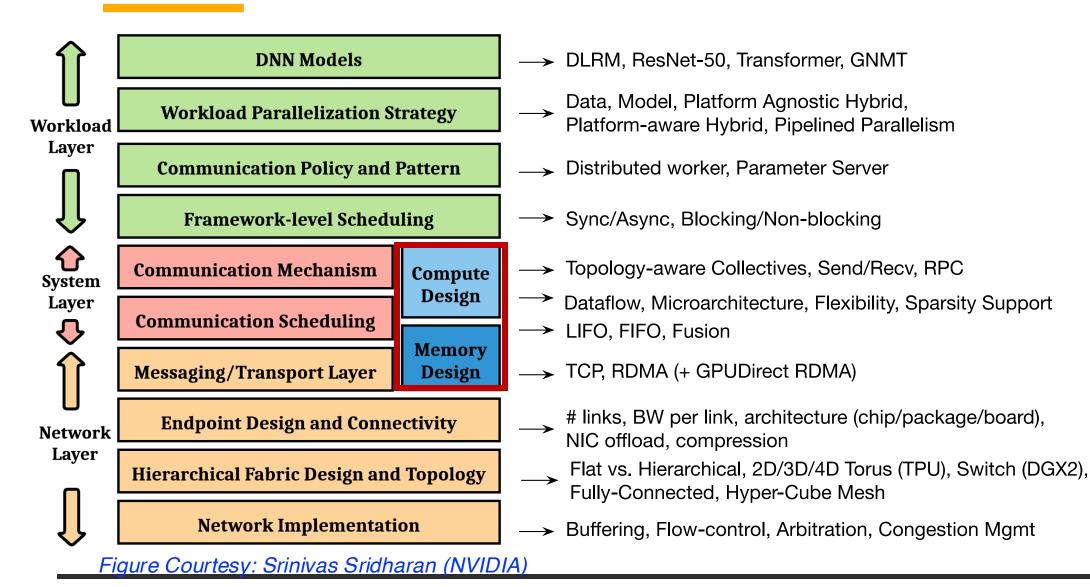
- It may be required depending on the parallelization strategy (discussed next)
- Handled either via collective based patterns or direct Node-to-Node sends/recvs (no parameter server is used).

When are collectives needed?

	Model (i.e. weight) Updates	Input Gradient Exchange	Output Activation Exchange
Param-server	Ν	Data-parallel: N Tensor-parallel: Usually [*] Pipeline-Parallel: N	Data-parallel: N Tensor-parallel: Usually [*] Pipeline-Parallel: N
Collective-based	Y (All-Reduce)	Data-parallel: N Tensor-parallel: Usually* Pipeline-Parallel: N	Data-parallel: N Tensor-parallel: Usually * Pipeline-Parallel: N

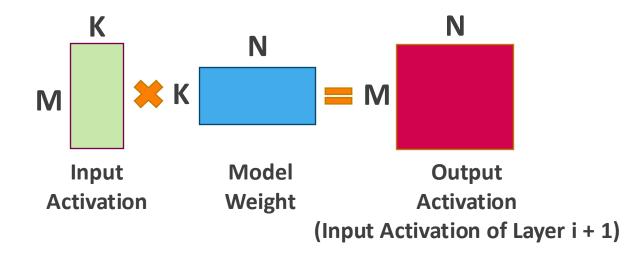
* All-reduce, All-gather, Reduce-scatter, All-to-All

Distributed Training Stack



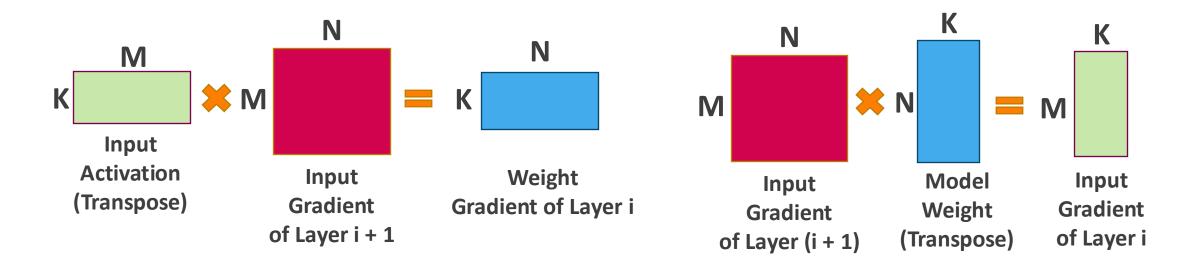
Training: Forward Pass

- In forward pass, each DNN layer computes **Output Activation**
 - From Input Activation (=output activation from last layer)
 - And Model Weights
 - Commonly through **GEMM** (Matrix Multiplication)

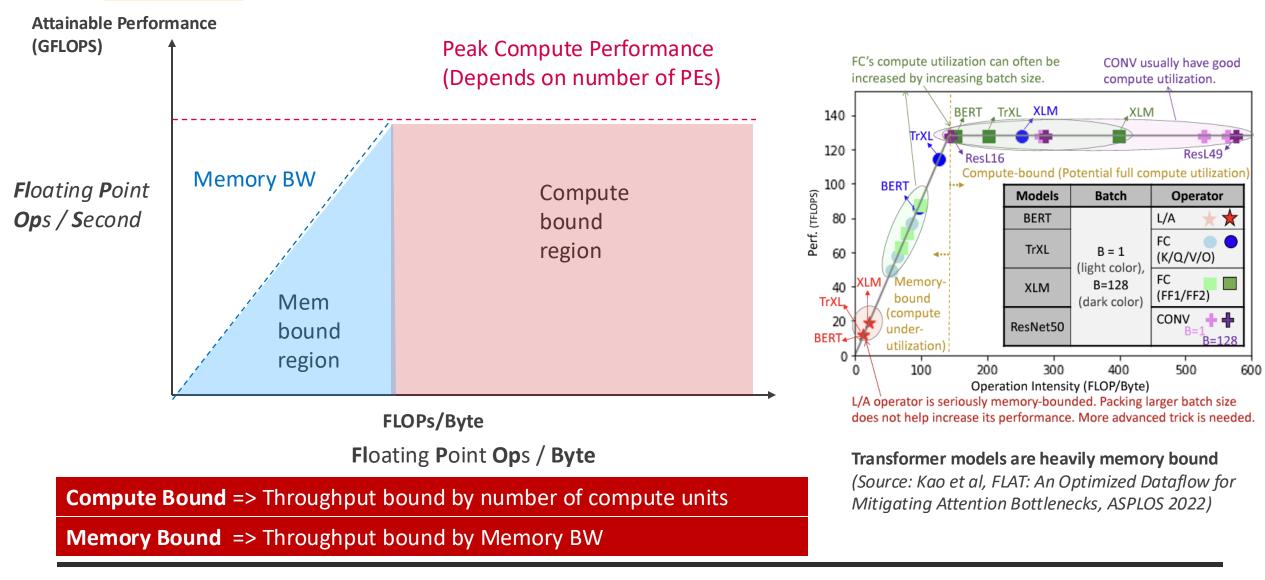


Training: Backward Pass

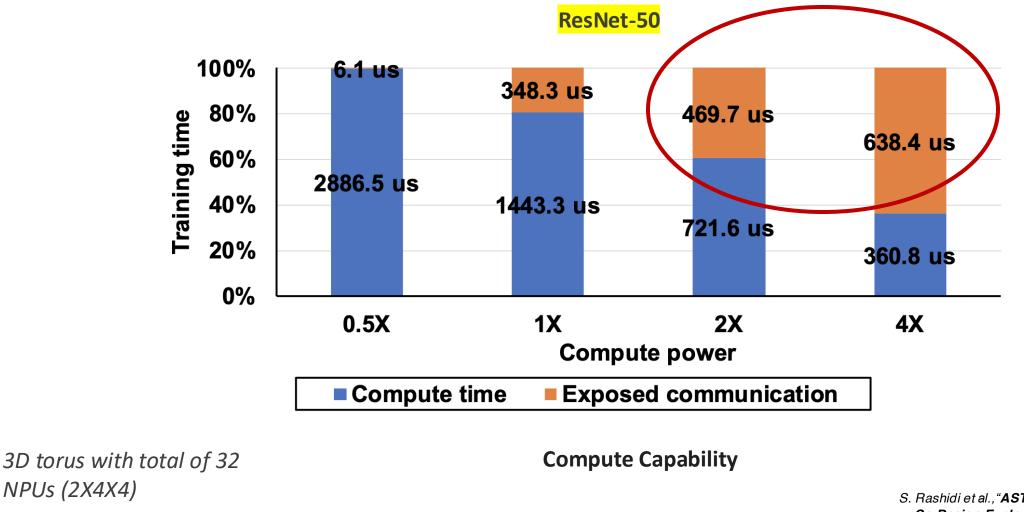
- In backward pass, each DNN layer computes:
 - Weight Gradient: to update model weights
 - Input Gradient: required to calculate weight gradient of layer (i 1)
 - Commonly **GEMM** operations



Compute Efficiency Depends on Data Reuse



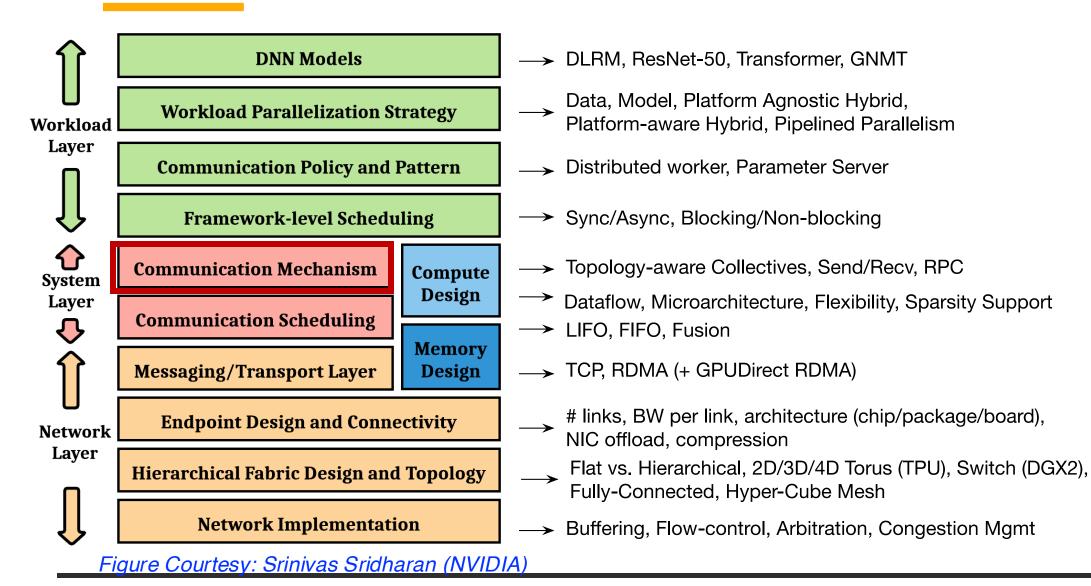
Effect of Enhanced Compute Efficiency on Communication



S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW **Co-Design Exploration for Distributed DL** Training Platforms", ISPASS 2020

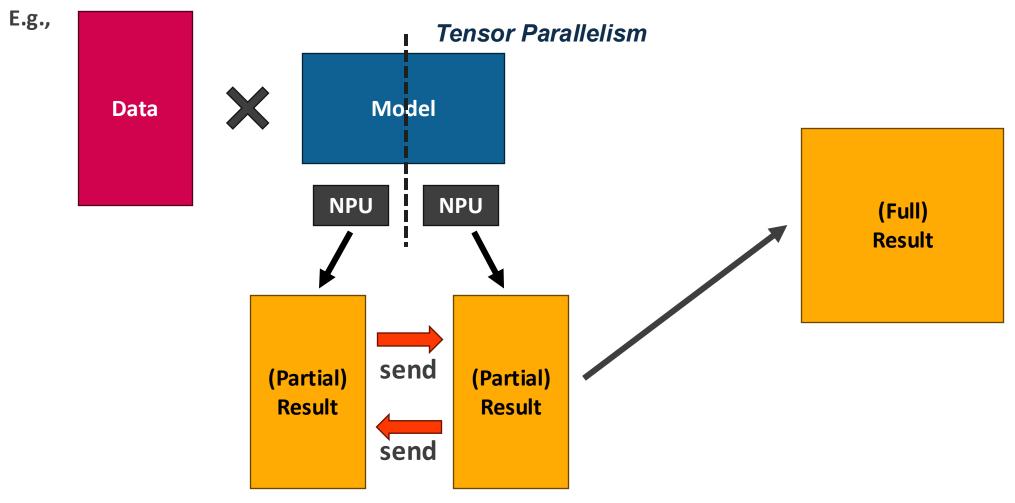
NPUs (2X4X4)

Distributed Training Stack



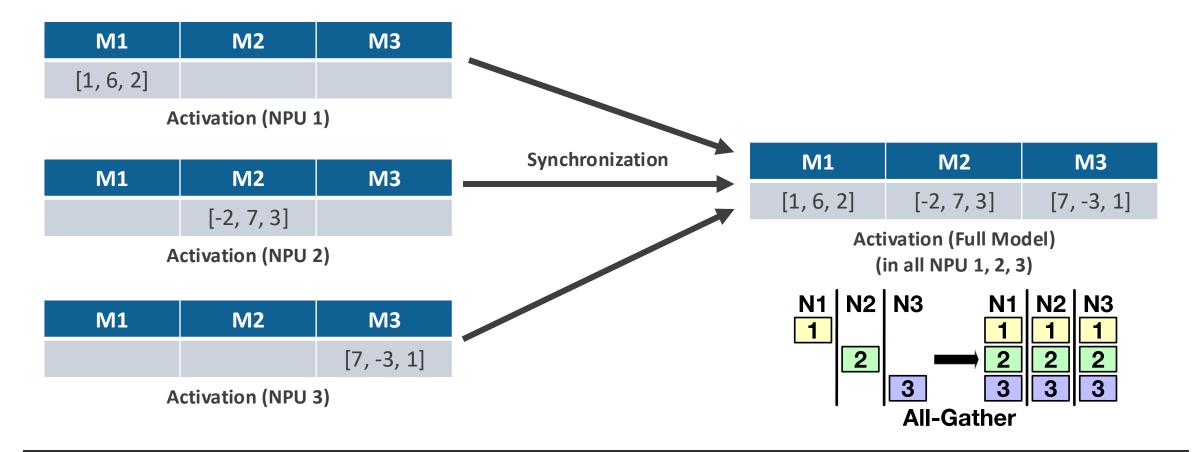
Communication in Distributed ML

• NPUs should communicate to synchronize outcomes



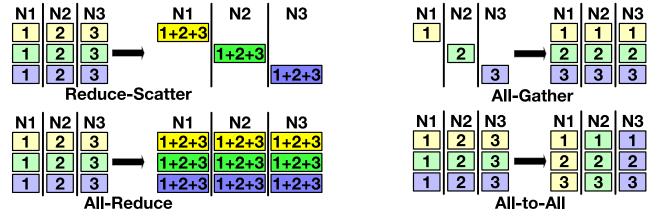
Example: Tensor Parallelism

- Each of the NPU produces part of ML activation results
 - NPUs then synchronize to recover the full activation result



Collective Communication "Patterns"

• Used for **communication/ synchronization** in distributed training/inference

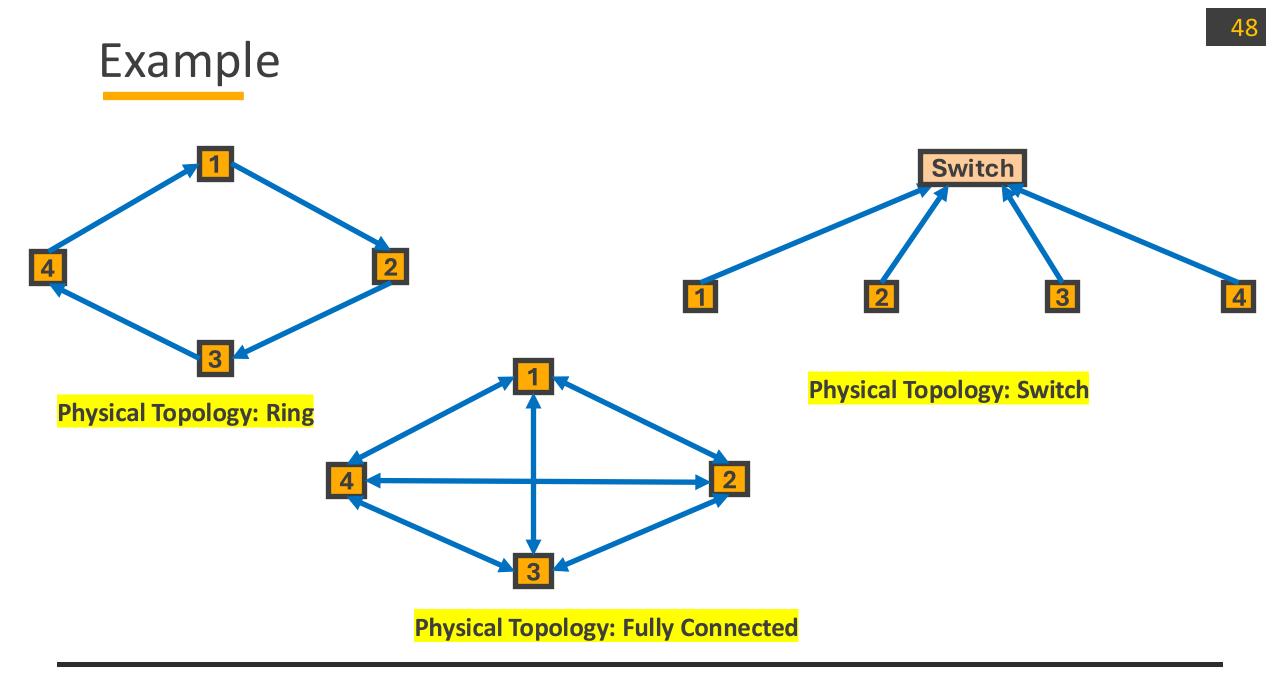


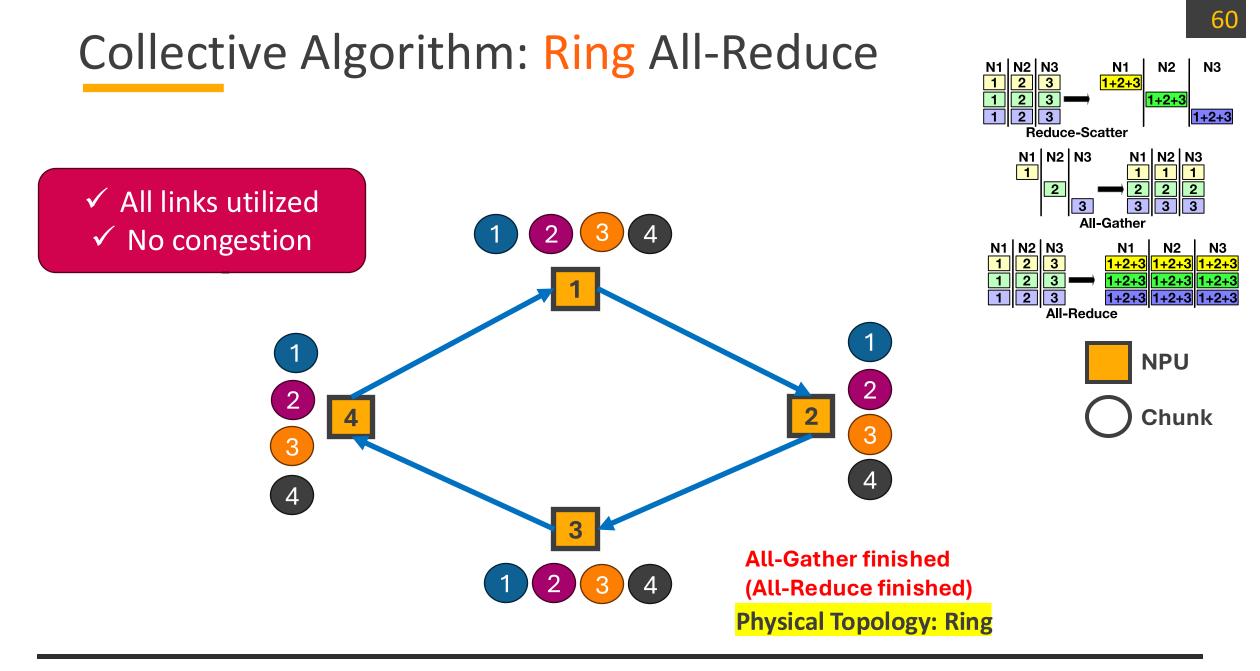
• Specific pattern depends on parallelization strategy

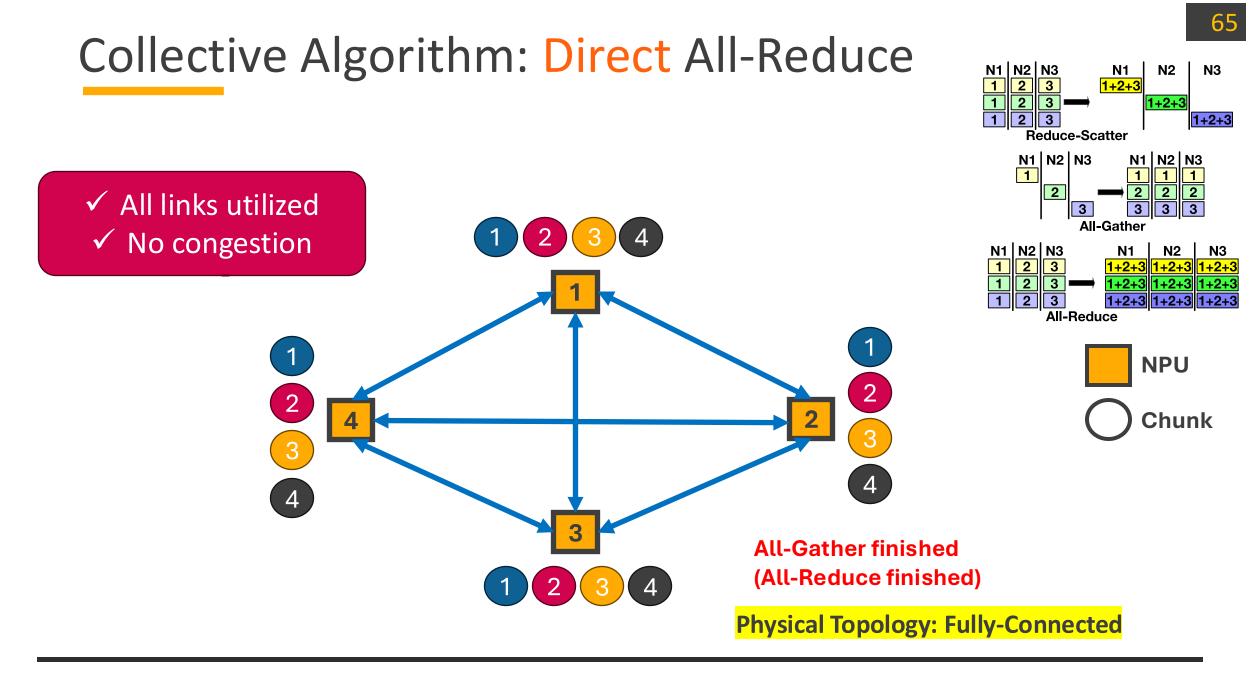
Parallelization	Reduce-Scatter	All-Gather	All-Reduce
Data Parallel			\checkmark
Tensor Parallel			\checkmark
Hybrid Parallel	\checkmark	\checkmark	\checkmark
FSDP	\checkmark	\checkmark	
ZeRO	\checkmark	\checkmark	

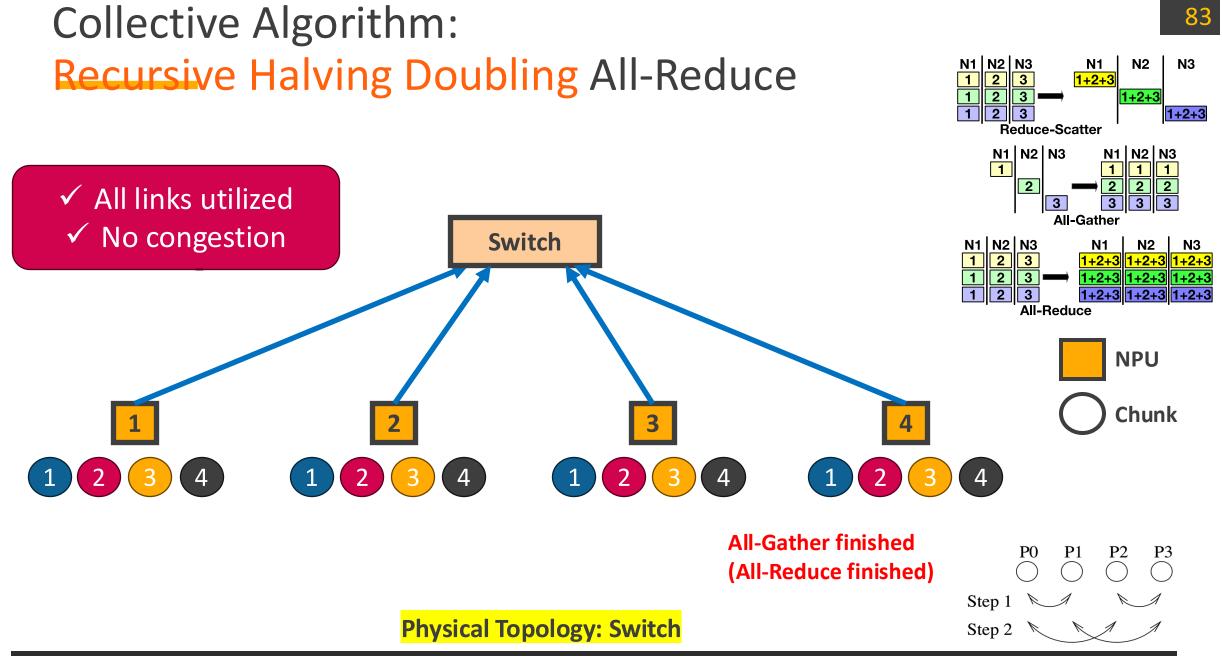
Collective Communication "Algorithms"

- Routing algorithm to *implement* collective patterns
- Collective communication libraries (CCLs, e.g., NCCL, RCCL, oneCCL) use diverse collective algorithms to implement collective communication patterns
 - Example All-Reduce Algorithms: Ring, Direct, Halving-Doubling, Rabenseifner, Double Binary Tree, etc.
- Given a network topology, an **efficient algorithm** to run collective communication is called a **topology-aware collective algorithm**









Summary: Basic Collective Algorithms

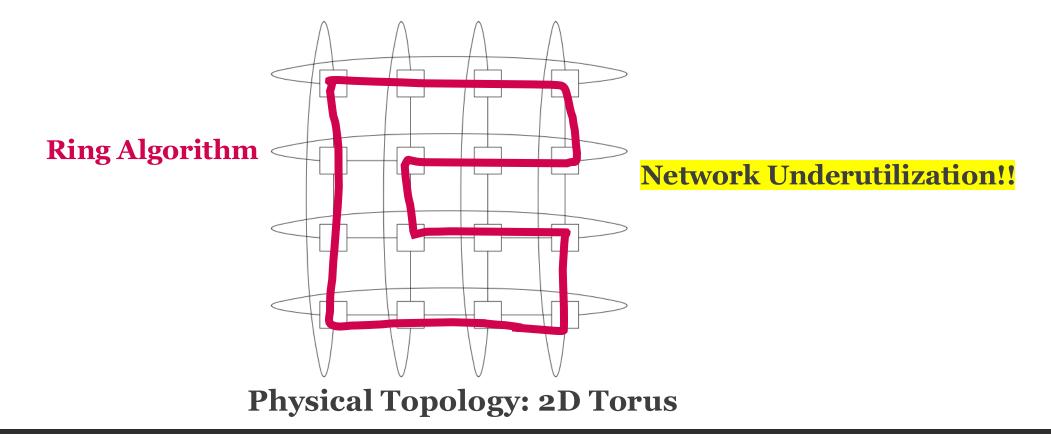
• No network congestion while running collective communication

	Topology Building Block	Topology-aware Collective Algorithm
2 k 3 ····	Ring	Ring
2 k 3 ···	FullyConnected	Direct
Switch 123…k	Switch	HalvingDoubling

What about other topologies?

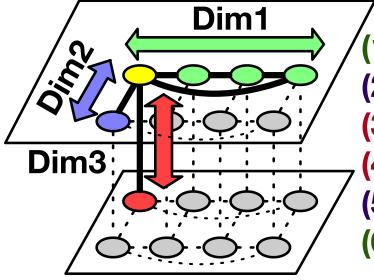
Topology-aware Collective Algorithms

- Optimal collective algorithm heavily depends on network topology
 - Simple collective algorithms will not directly map



Multi-dimensional Collective Algorithm

• Phased approach of Reduce-Scatter and All-Gather



(1) Dim 1: Reduce-Scatter
(2) Dim 2: Reduce-Scatter
(3) Dim 3: Reduce-Scatter
(4) Dim 3: All-Gather
(5) Dim 2: All-Gather
(6) Dim 1: All-Gather

Distributed Training Stack

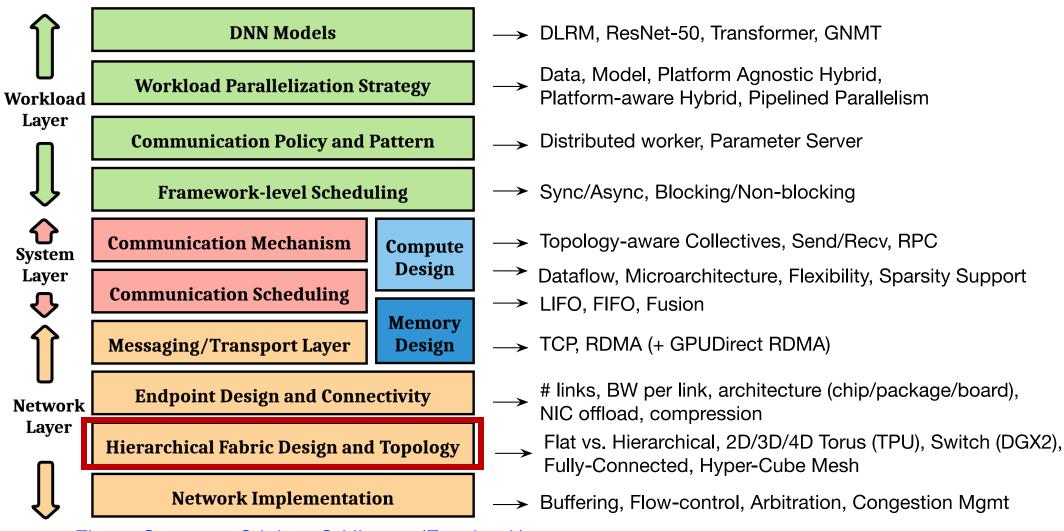
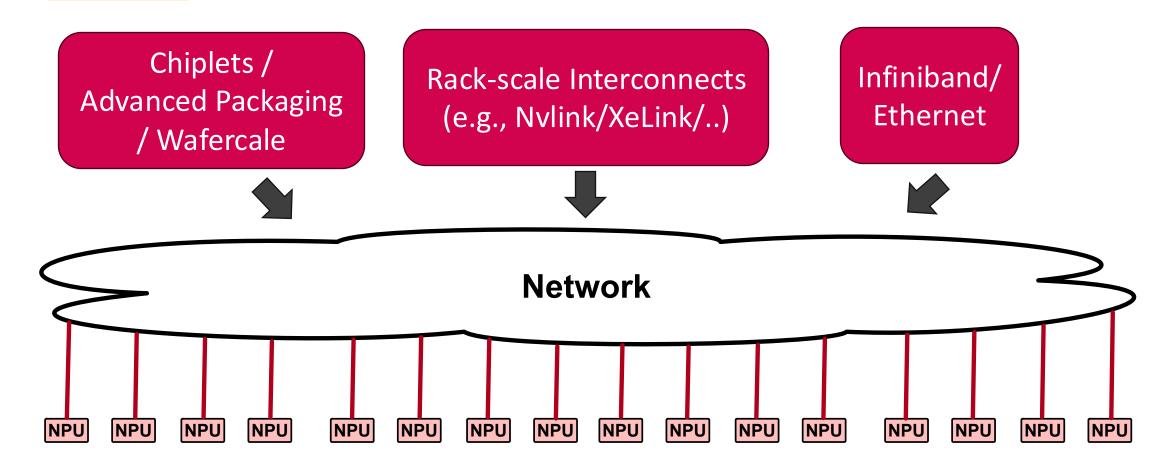
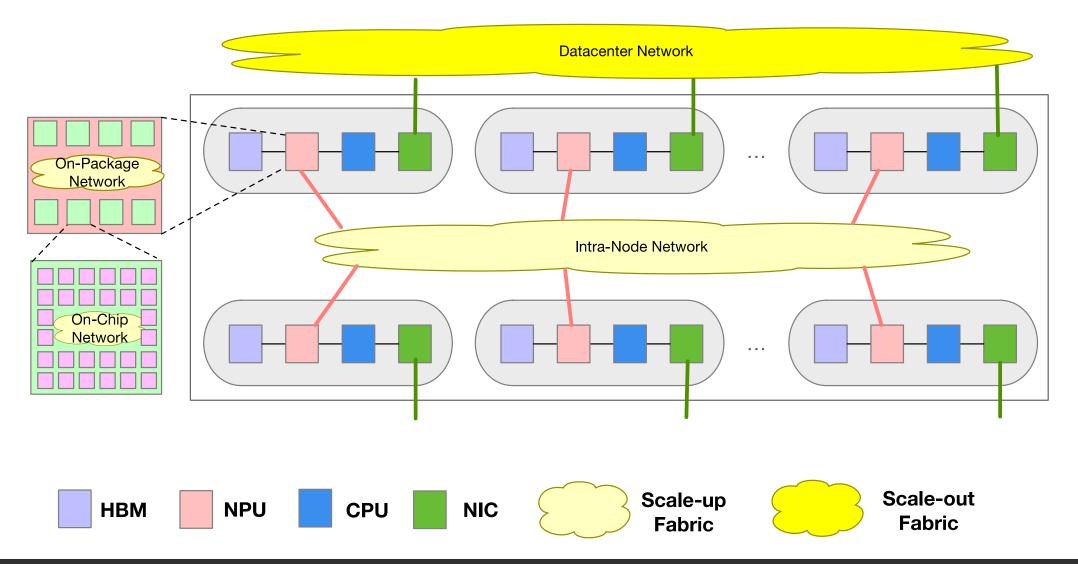


Figure Courtesy: Srinivas Sridharan (Facebook)

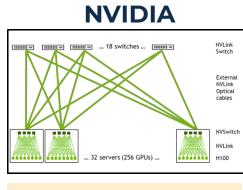
Networking Technologies



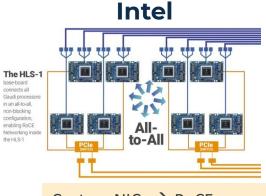
Hierarchical Network Architectures



Examples



NVswitch \rightarrow Infiniband



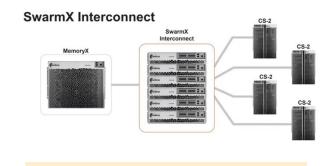
Custom NICs \rightarrow RoCE

Cle

Google

3D Electrical Torus \rightarrow Optical

Cerebras



Wafer-scale → SwarmX Tree

AMD

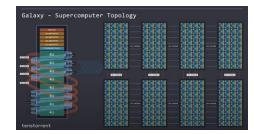
Infiniti \rightarrow Infiniti

Meta

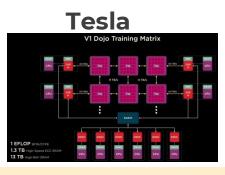
ald Pools	EP	OAM Int	erconnect	
$ \rightarrow $	OAM0 OAM1	OAM2 OAM3	OAM4 OAM5	OAM6 OAM7
Creek	PCle Gen4 Switch	PCle Gen4 Switch	PCle Gen4 Switch	PCle Gen4 Switch
\Rightarrow	PCIe Gen4	PCle Gen4	PCIe Gen4	PCle Gen4 Switch
Landing	AL CPU0	CPU2	СРИЗ	CPU1
ls Landing		CPU2	СРИЗ	СРІ

NVlink \rightarrow RoCE

Tensorrent

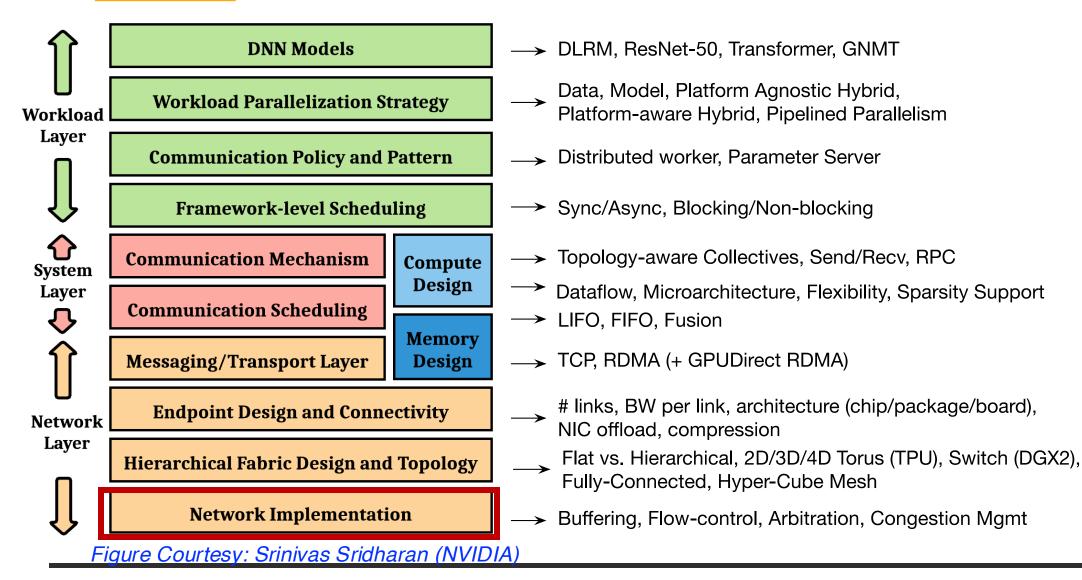


On-package Mesh \rightarrow off-chip mesh



On-package Mesh \rightarrow Ethernet

Distributed Training Stack



Example: Infiniband vs RoCE

	InfiniBand	RoCEv2
End-to-end delay	2us	5us
Flow Control Mechanism	Credit-based flow control mechanism	PFC/ECN, DCQCN
Forwarding Mode	Forwarding based on Local ID	IP-based Forwarding
Load Balancing Mode	Packet-by-Packet Adaptive Routing	ECMP Routing
Recovery	Self-Healing Interconnect Enhancement for Intelligent Datacenters	Route Convergence
Network Configuration	Zero configuration through UFM	Manual Configuration
	InfiniBand VS. RoCE v2 technical co	mparison

Summary and Takeaways

- Design of Distributed AI/ML Platforms is an ongoing open-research area
- Many emerging supercomputing systems being designed specifically for this problem!
- Co-design of algorithm and system offers high opportunities for speedup and efficiency