

Exercise 3: Comparing Systems

William Won

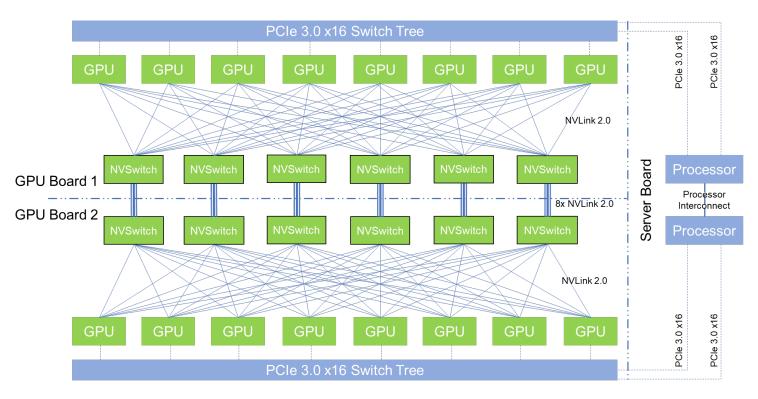
Ph.D. Student, School of Computer Science Georgia Institute of Technology william.won@gatech.edu

Acknowledgments: Srinivas Sridharan (Facebook), Sudarshan Srinivasan (Intel)

Time (EDT)	Topic	Presenter
8:30 – 9:30	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna
9:30 – 10:30	ASTRA-sim	Saeed Rashidi
10:30 - 11:00	Coffee Break	
11:00 – 11:50	Demo and Exercises	William Won and Taekyung Heo
11:50 – 12:00	Extensions and Future Development	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/isca-2022


Attention: Tutorial is being recorded

Objective

- Representing real systems using ASTRA-sim
 - NVIDIA DGX-2 Pods
 - Google Cloud TPU
- Running real DL workload benchmarks
 - Vision model (VGG-16)
 - Language model (GPT-3)
- Comparing ASTRA-sim results

NVIDIA DGX-2 Architecture

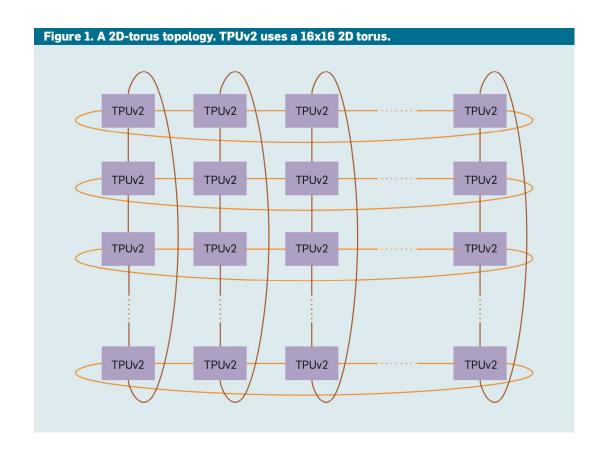
- 16 V100 GPUs
- Connected Using NVSwitch / NVLink
- 100 GbE InfiniBand Scale-out per 2 GPUs (i.e., effectively 50 GbE per GPU)

- NVSwitch:
 - 25 GB/s per NVLink
 - 6 NVLinks per GPU
- InfiniBand Switch:
 - 6.25 GB/s

https://docs.it4i.cz/dgx2/introduction/

Representing DGX-2

• 16 DGX-2 connected (total 256 GPUs)


```
inputs/dqx2.json
                                              2D network
  "dimensions-count": 2,
  "topologies-per-dim": ["Switch", "Switch"], - Switch_Switch Topology
  "units-count": [16, 16],
                                     16x16 GPUs (total 256 GPUs)
  "links-count": [6, 1],
                                       ———— [6, 1] links per GPU, dim
                                                link latency
  "link-latency": [500, 500], -
                                            link bandwidth
  "link-bandwidth": [25, 6.25] -
```

Representing DGX-2

• 16 DGX-2 connected (total 256 GPUs)

inputs/dgx2.txt

Google Cloud TPU Architecture

- 16×16 TPUv2 (Total 256 TPUs)
- 2D Torus Topology
- Inter-core Interconnect (ICI)
 - 496 Gbps (= 62 GB/s)

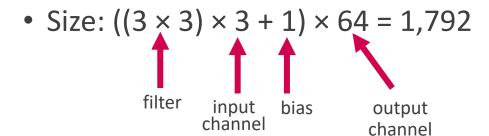
N. Jouppi *et al.*, "A Domain-Specific Supercomputer for Training Deep Neural Networks," Communications of the ACM, 63, 7, 67-78.

Representing Cloud TPU

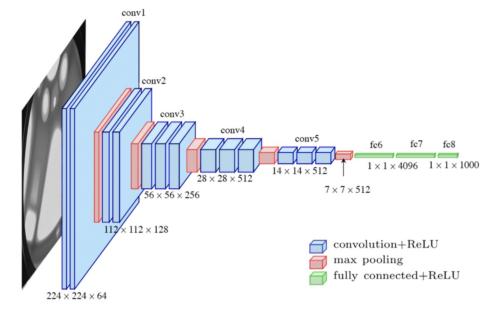
• 16×16 TPUv2 (Total 256 TPUs)

```
inputs/tpu.json
                                                  2D network
  "dimensions-count": 2,
  "topologies-per-dim": ["Ring", "Ring"], ------- Ring_Ring Topology (2D Torus)
                                           16x16 TPUs (total 256 TPUs)
  "units-count": [16, 16], -
  "links-count": [2, 2],
                                                  [2, 2] links per TPU, dim
                                                   link latency
  "link-latency": [500, 500], -
                                                — 62GB/s link bandwidth
  "link-bandwidth": [62, 62]
```

Representing Cloud TPU


• 16×16 TPUv2 (Total 256 TPUs)

```
inputs/tpu.txt
```


Meta	data		Forward		ı	nput grad		V	Veight gra	d	Layer
Layer Name	(rsvd.)	Compute Time	Comm. Type	Comm. size	Compute Time	Comm. Type	Comm. Size	Compute Time	Comm. Type	Comm. Size	Delay
allreduce	-1	1	NONE	0	1	NONE	0	1	ALLREDUCE	1048576	1

- Compute Time
- Communication Type
- Communication Size

- VGG-16 first layer: $(50,176 \times 27) \times (27 \times 64)$
 - Total 173,408,256 operations
 - TPUv2: 46 TFLOPS (46 × 2⁴⁰ op/s)
 - 3429 ns
- Can leverage Workload Generator or other performance estimations
- Communication: Filter

• $1,792 \times 2B = 3,584 (=3.5 KB)$

https://medium.com/mlearning-ai/an-overview-of-vgg16-and-nin-models-96e4bf398484

inputs/vgg16.txt

```
Data Parallel

16 #layers

block1_conv1 -1 3429 NONE 0 3429 NONE 0 3429 ALLREDUCE 3584 1 1st layer
```

Metada	Metadata Forward		Input grad			Weight grad			Layer		
Layer Name	(rsvd.)	Compute Time	Comm. Type	Comm. size	Compute Time	Comm. Type	Comm. Size	Compute Time	Comm. Type	Comm. Size	Delay
block1_conv1	-1	3429	NONE	0	3429	NONE	0	3429	ALLREDUCE	3584	1
Estimated Compute Time								Da	T ta-Paral		
										3.5 KB	

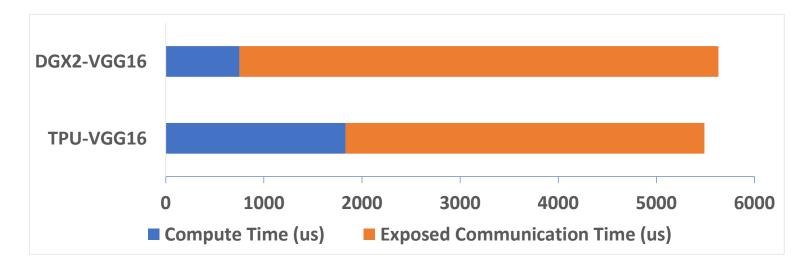
	V100	TPUv2
Peak Tensor Performance (TFLOPS)	112	46

- V100 is 2.43x faster than TPUv2
- *i.e.*, V100 compute time is **0.41x** of TPUv2

Running Experiment

- Objective:
 - Run VGG-16
 - On DGX-2 Pod and Cloud TPU
- V100 compute time is 0.41x of TPUv2

Running Experiment


- Objective:
 - Run **VGG-16**
 - On DGX-2 Pod and Cloud TPU

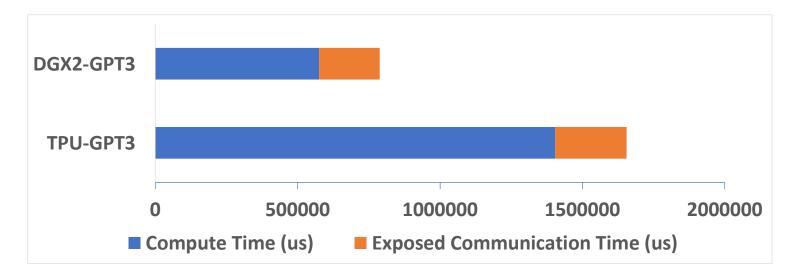
```
$ cd exercise_3/
$ ./build.sh
$ ./exercise 3 1.sh
```

Understanding Results

result_1/tutorial_result.csv

Name	Total Time (us)	Compute Time (us)	Exposed Communication Time (us)	Total Message Size (MB)
DGX2-VGG16	5632.316	751.019	4881.297	525.729748
TPU-VGG16	5489.225	1831.809	3657.416	525.730019

Running Experiment


- Objective:
 - Run **GPT-3** (First 3 Transformer layers)
 - On DGX-2 Pod and Cloud TPU

```
$ ./build.sh
$ ./exercise_3_2.sh
```

Understanding Results

result 2/tutorial result.csv

Name	Total Time (us)	Compute Time (us)	Exposed Communication Time (us)	Total Message Size (MB)
DGX2-GPT3	787767.34	575821.446	211945.894	32943.252
TPU-GPT3	1655238.43	1404442.610	250795.814	32943.252

Time (EDT)	Topic	Presenter
8:30 – 9:30	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna
9:30 – 10:30	ASTRA-sim	Saeed Rashidi
10:30 - 11:00	Coffee Break	
11:00 – 11:50	Demo and Exercises	William Won and Taekyung Heo
11:50 – 12:00	Extensions and Future Development	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/isca-2022

Attention: Tutorial is being recorded