

http://synergy.ece.gatech.edu

ASTRA-SIM Description

Saeed Rashidi

Ph.D. Student, School of Electrical & Computer Engineering Georgia Institute of Technology

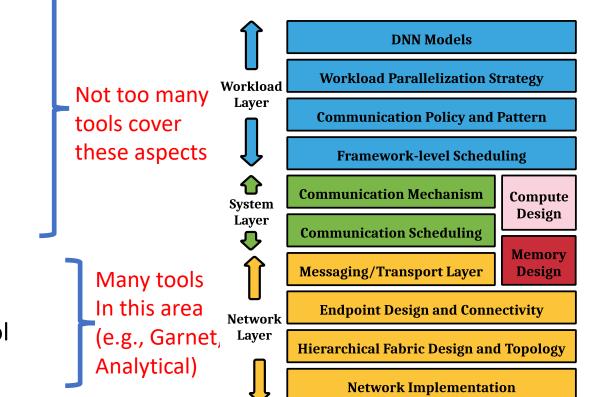
saeed.rashidi@gatech.edu

Acknowledgments: Srinivas Sridharan (Meta), Sudarshan Srinivasan (Intel)

Agenda

Time (EDT)	Торіс	Presenter
8:30 – 9:30	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna
9:30 - 10:30	ASTRA-sim	Saeed Rashidi
10:30 - 11:00	Coffee Break	
11:00 - 11:50	Demo and Exercises	William Won and Taekyung Heo
11:50 - 12:00	Extensions and Future Development	Taekyung Heo

Tutorial Website


includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/isca-2022</u>

Attention: Tutorial is being recorded

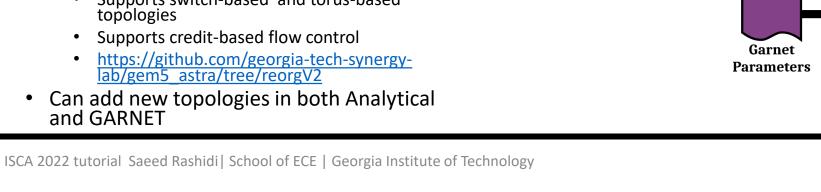
Overview

How to Model and Evaluate the Communication Effect

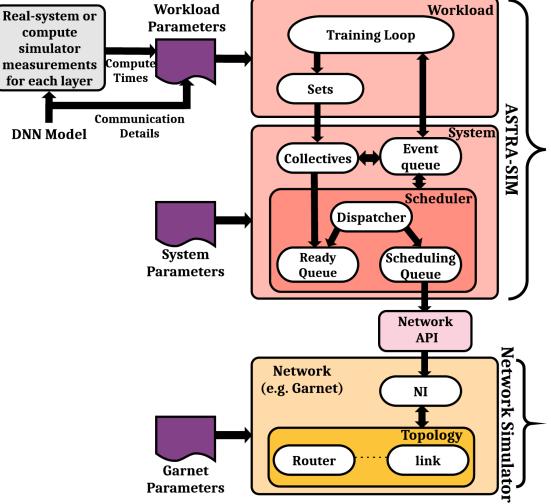
- It is a complex problem and can be viewed as three layers :
 - 1. Workload layer (the training loop):
 - Parallelism approach
 - Compute power
 - Communication size & type and dependency order
 - 2. System layer:
 - Collective communication algorithm
 - Chunk size, schedule of collectives
 - 3. Network layer:
 - Physical topology
 - Congestion control, communication protocol
 - Link BW, latency, buffers, routing algorithm

ASTRA-SIM Architecture

• Workload layer:

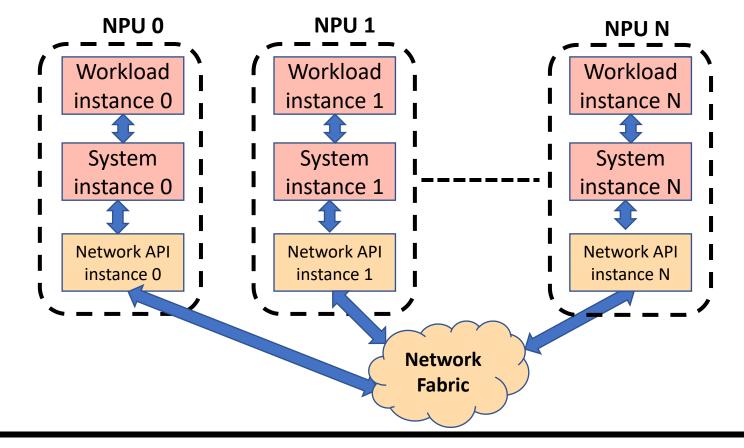

- Supports Data-Parallel, Model-Parallel, Hybrid-Parallel training loops
- Easy to add new arbitrary training loop

• System:


- Ring based, Tree-based, AlltoAll based, and multi-phase collectives
- Easy to add new collective communication

• Network:

- Supports Analytical and GARNET Network simulator
- Analytical:
 - Supports hierarchical topologies
 - Each level in hierarchy can be switch, ring, FC....
 - https://github.com/astrasim/analytical/tree/develop
- GARNET:
 - Supports switch-based and torus-based topologies
 - Supports credit-based flow control
 - https://github.com/georgia-tech-synergy-lab/gem5_astra/tree/reorgV2
- Can add new topologies in both Analytical and GARNET

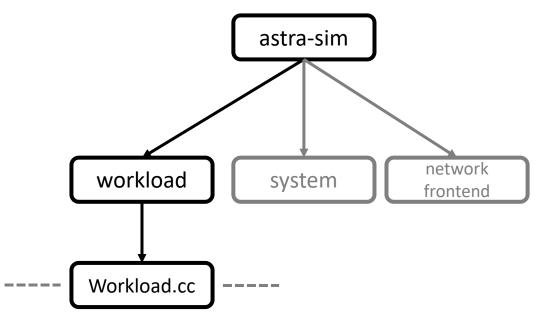


compute

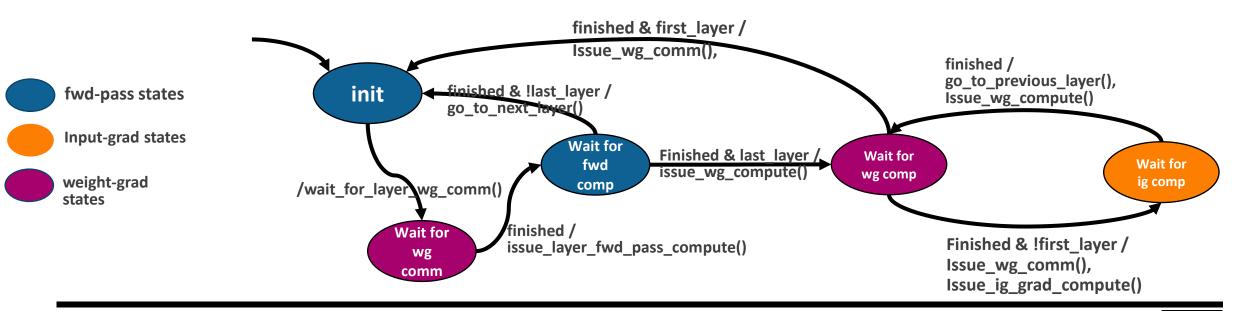
ASTRA-SIM Runtime Structure

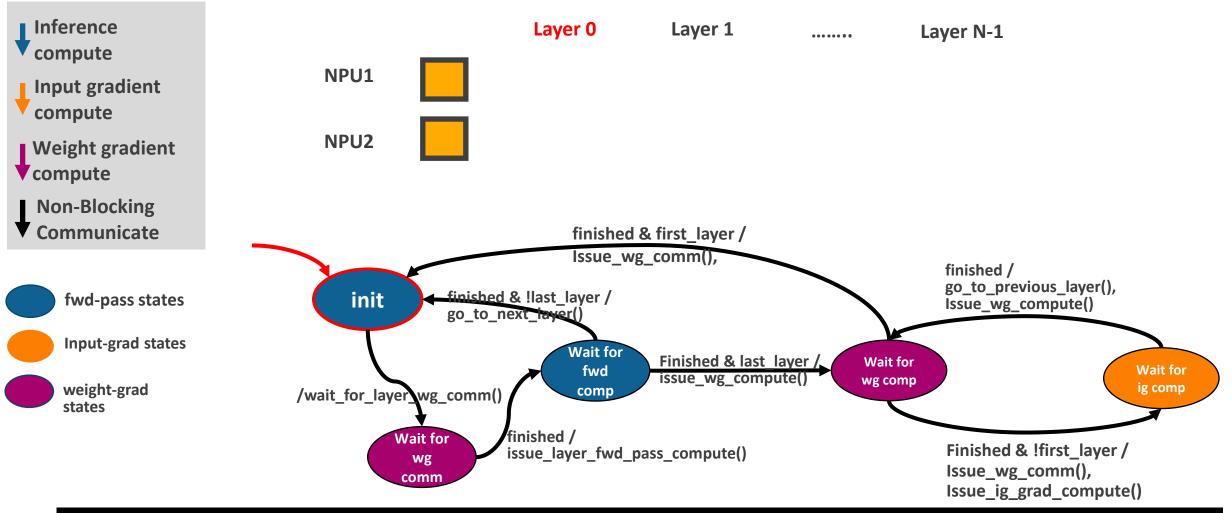
- Each NPU is represented through separate instance of Workload, System, and Network API.
- Network API class is implemented by the network backend.

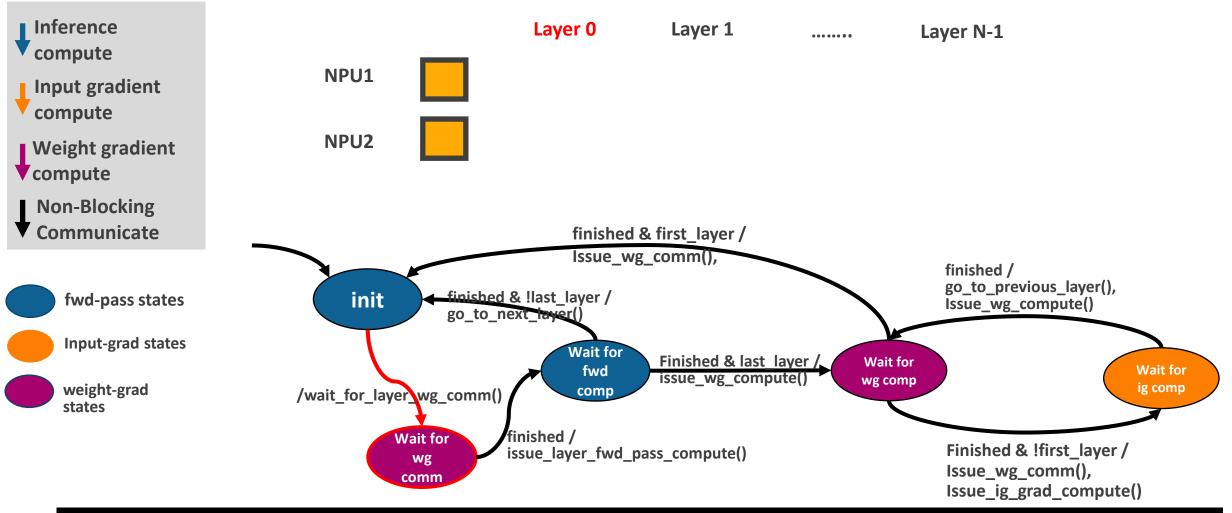
ISCA 2022 tutorial Saeed Rashidi | School of ECE | Georgia Institute of Technology

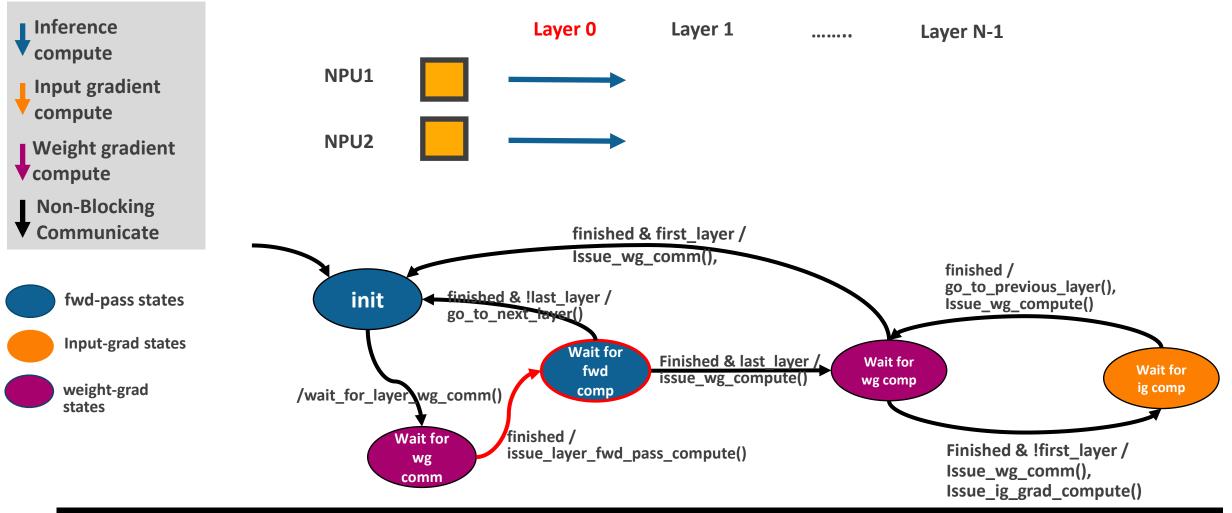

ASTRA-SIM Directory

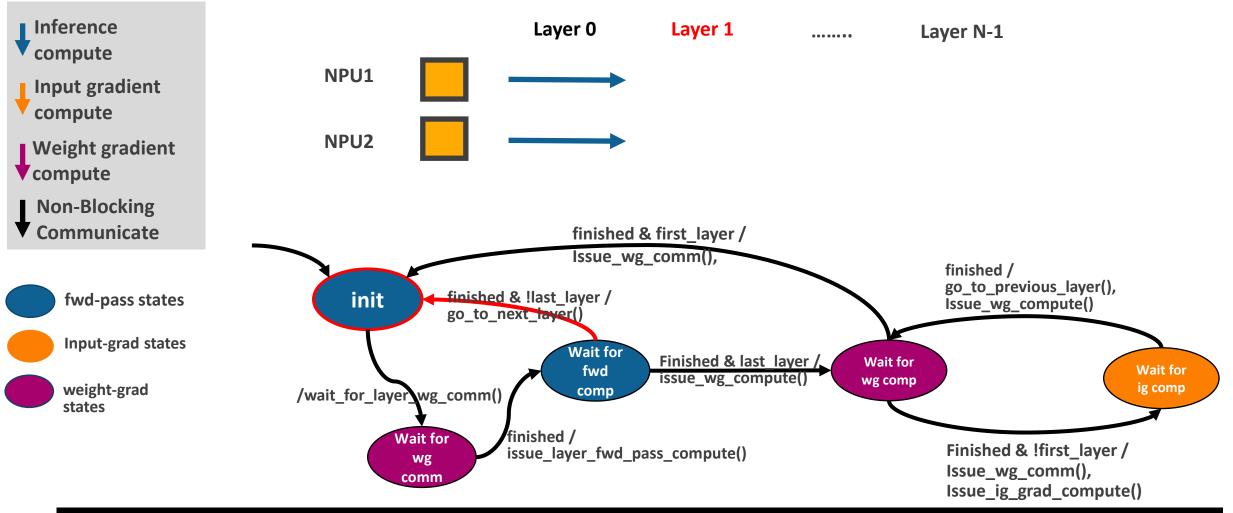
*	rashidi1saeed Merge pull request #44	from srinivas212/master × f7e54a8 15 hours ago	335 commits
	.github/workflows	Added GitHub Actions (#30)	8 months ago
	astra-sim	CSV Writer Updated	19 hours ago
	build	gem5 is now compatible with new changes	18 hours ago
	docs/images	updated	9 months ago
	examples	run_multi example script bug fixed	18 hours ago
	extern	Merge pull request #43 from astra-sim/saeed_astra_dev	15 hours ago
	inputs	Update README.md	17 hours ago
	scripts/workload_generator	-:TESTED:-	last month
	test	Fix formatting using clang-format	9 months ago
ß	.clang-format	Use PyTorch .clang-format	9 months ago
ß	.clang-tidy	Added GitHub Actions (#30)	8 months ago
ß	.gitignore	Added GitHub Actions (#30)	8 months ago
ß	.gitmodules	Add scale sim v2 submodule	last month
ß	CMakeLists.txt	CMAKELists updated	yesterday
ß	CODEOWNERS	Modify CODEOWNERS	16 hours ago
ß	LICENSE	Update LICENSE	9 months ago
Ľ	README.md	Update README.md	9 months ago

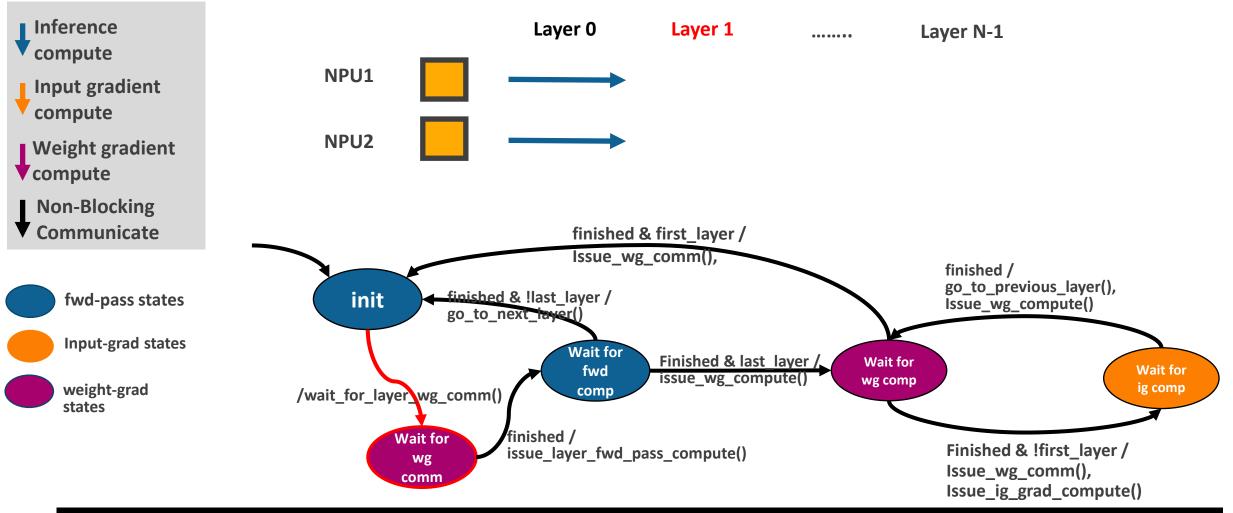

Workload Layer

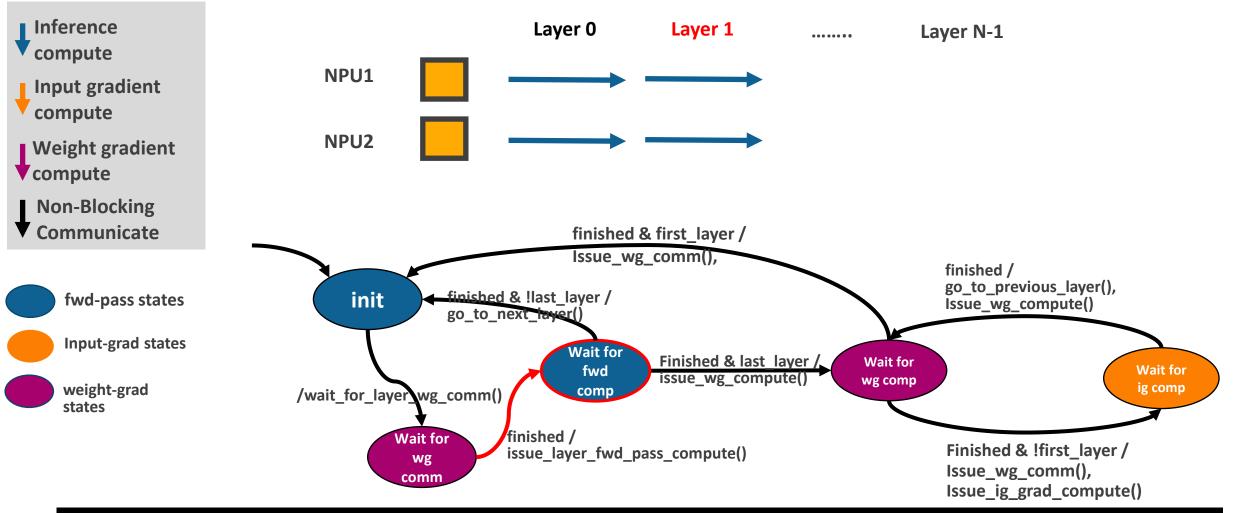

Workload Layer Training Loop

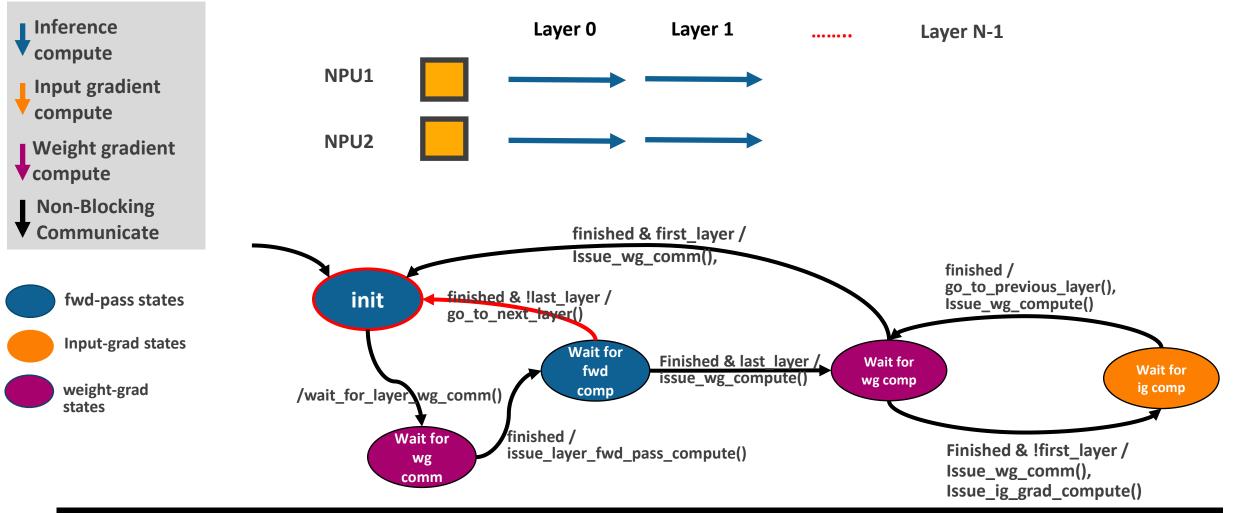

Code Structure

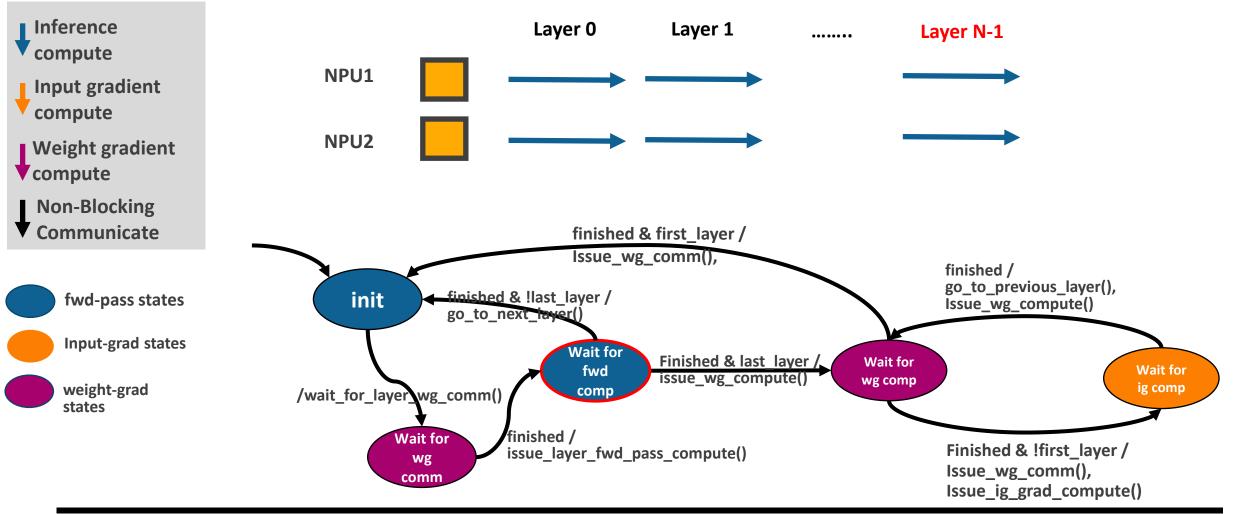


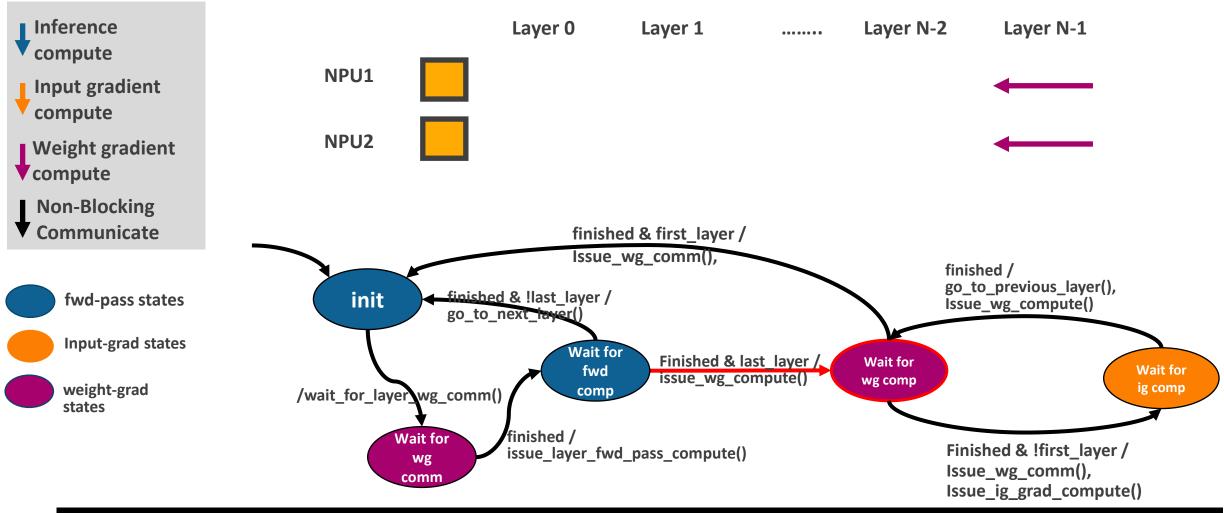

Implements different training loops

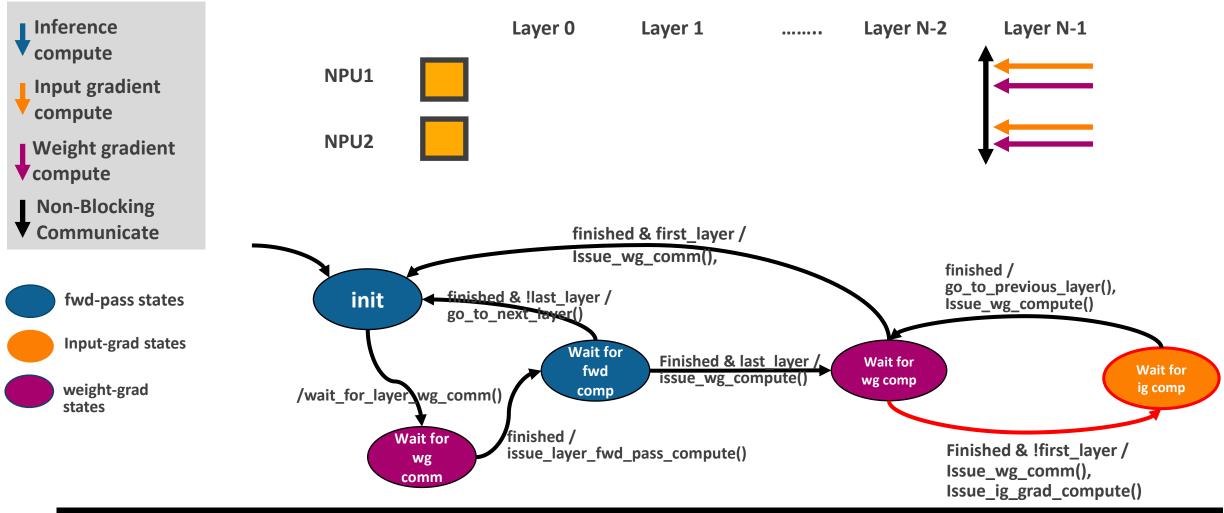




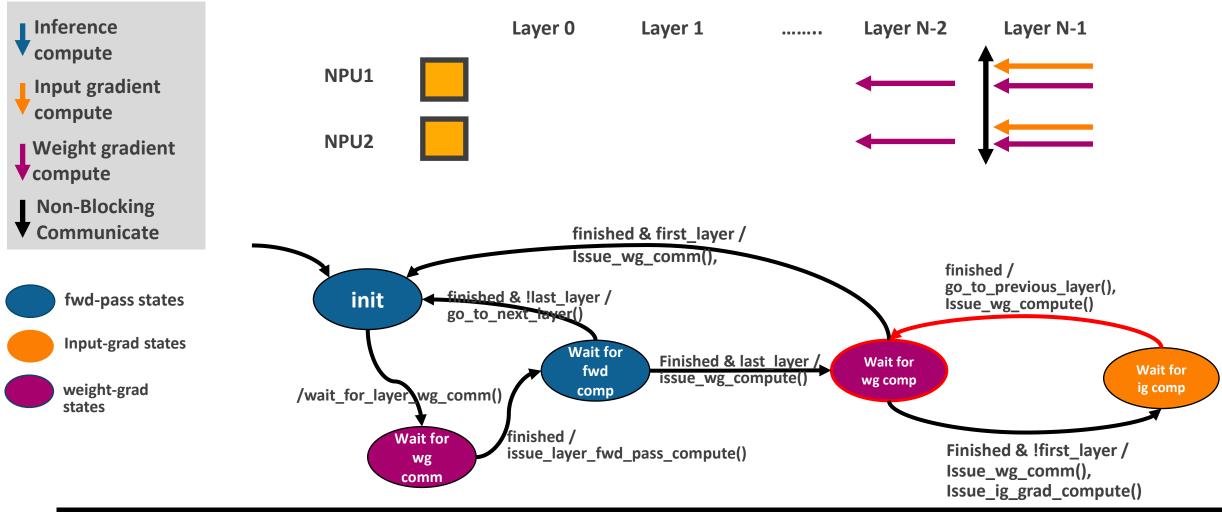


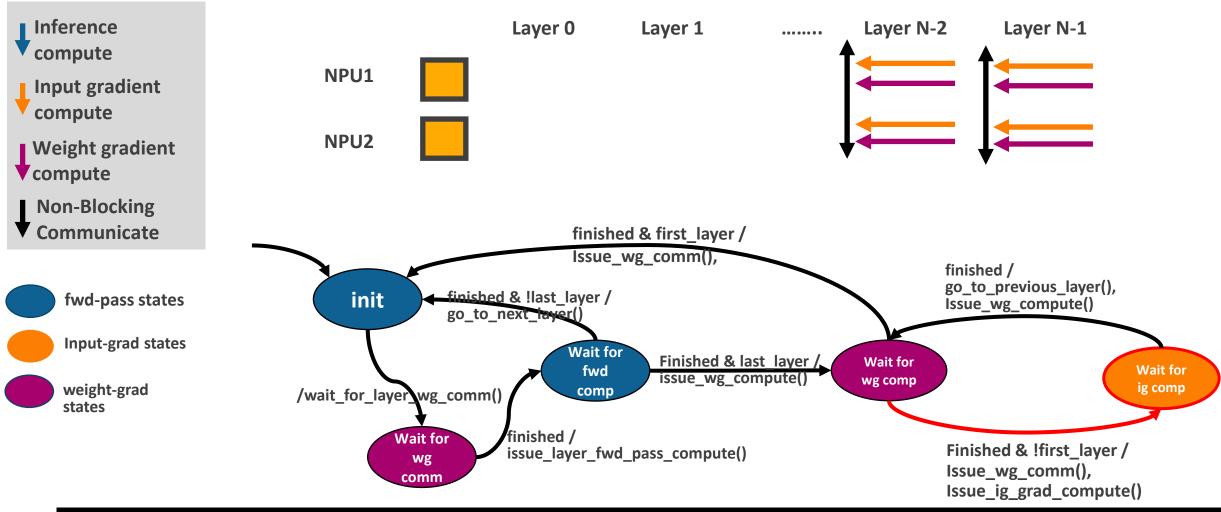




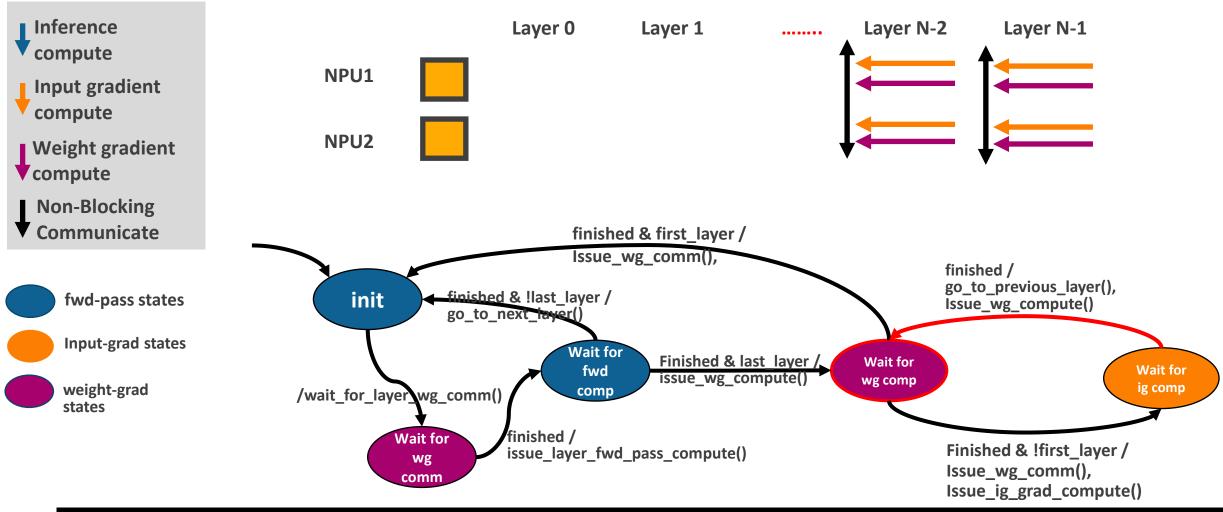


• Different training loops can be captured using state machines.

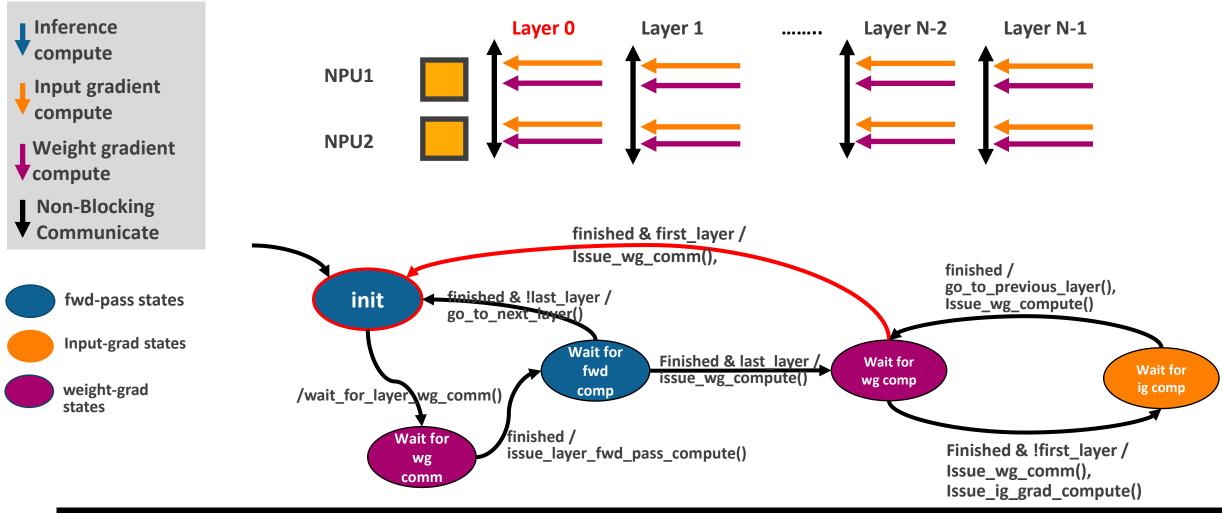



ISCA 2022 tutorial Saeed Rashidi | School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.



ISCA 2022 tutorial Saeed Rashidi | School of ECE | Georgia Institute of Technology

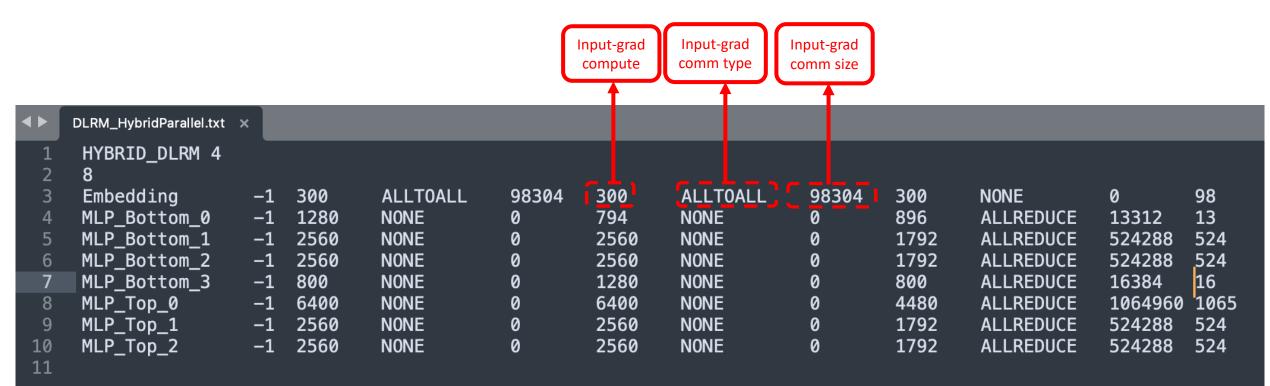


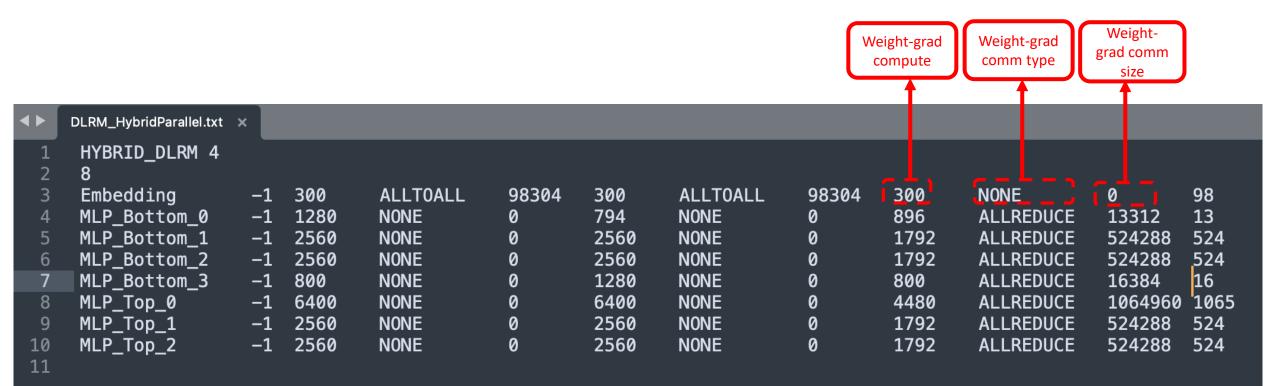
• Different training loops can be captured using state machines.

ISCA 2022 tutorial Saeed Rashidi | School of ECE | Georgia Institute of Technology

• Different training loops can be captured using state machines.

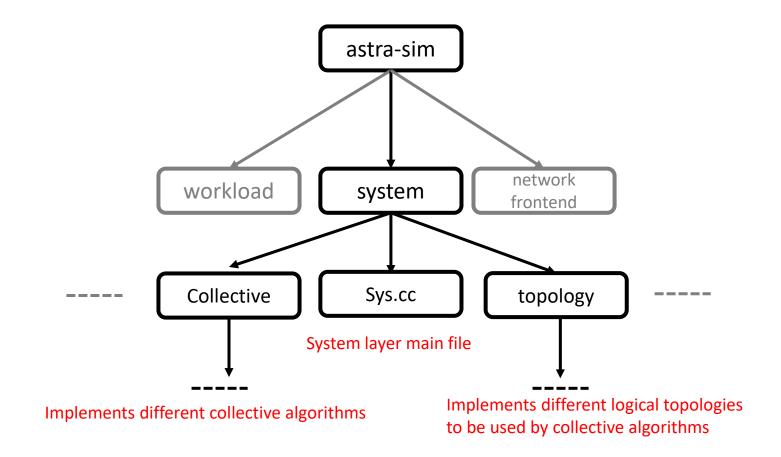
ISCA 2022 tutorial Saeed Rashidi | School of ECE | Georgia Institute of Technology


Training loop			Workl	oad-specific me	etadata							
	DLRM_HybridParallel.txt	×										
1	HYBRID_DLRM_4											
2	8											
3	Embedding	-1	300	ALLTOALL	98304	300	ALLT0ALL	98304	300	NONE	0	98
4	MLP_Bottom_0	-1	1280	NONE	0	794	NONE	0	896	ALLREDUCE	13312	13
5	MLP_Bottom_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
6	MLP_Bottom_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
7	MLP_Bottom_3	-1	800	NONE	0	1280	NONE	0	800	ALLREDUCE	16384	16
8	MLP_Top_0	-1	6400	NONE	0	6400	NONE	0	4480	ALLREDUCE	1064960	1065
9	MLP_Top_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
10	MLP_Top_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
11												


# 0	# of layers													
	T													
< >	DLRM_HybridParallel.txt	×												
1	HYBRID DLRM 4													
2	8													
3	Embedding	-1	300	ALLTOALL	98304	300	ALLTOALL	98304	300	NONE	0	98		
4	MLP_Bottom_0	-1	1280	NONE	0	794	NONE	0	896	ALLREDUCE	13312	13		
5	MLP_Bottom_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524		
6	MLP_Bottom_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524		
7	MLP_Bottom_3	-1	800	NONE	0	1280	NONE	0	800	ALLREDUCE	16384	16		
8	MLP_Top_0	-1	6400	NONE	0	6400	NONE	0	4480	ALLREDUCE	1064960	1065		
9	MLP_Top_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524		
10	MLP_Top_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524		
11														

		(Layer de	scription								
< >	DLRM_HybridParallel.txt	×										
1	HYBRID_DLRM 4											
2	8											
3	Embedding	-1	300	ALLTOALL	98304	300	ALLTOALL	98304	300	NONE	0	98
4	MLP_Bottom_0	-1	1280	NONE	0	794	NONE	0	896	ALLREDUCE	13312	13
5	MLP_Bottom_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
6	MLP_Bottom_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
7	MLP_Bottom_3	-1	800	NONE	0	1280	NONE	0	800	ALLREDUCE	16384	16
8	MLP_Top_0	-1	6400	NONE	0	6400	NONE	0	4480	ALLREDUCE	1064960	1065
9	MLP_Top_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
10 11	MLP_Top_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524

	Layer name											
< >	DLRM_HybridParallel.txt	×										
1	HYBRID_DLRM 4	_	_			_		_	_			_
2	8											
3	Embedding	-1	300	ALLT0ALL	98304	300	ALLTOALL	98304	300	NONE	0	98
4	MLP_Bottom_0	-1	1280	NONE	0	794	NONE	0	896	ALLREDUCE	13312	13
5	MLP_Bottom_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
6	MLP_Bottom_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
7	MLP_Bottom_3	-1	800	NONE	0	1280	NONE	0	800	ALLREDUCE	16384	16
8	MLP_Top_0	-1	6400	NONE	0	6400	NONE	0	4480	ALLREDUCE	1064960	1065
9	MLP_Top_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
10	MLP_Top_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
11												

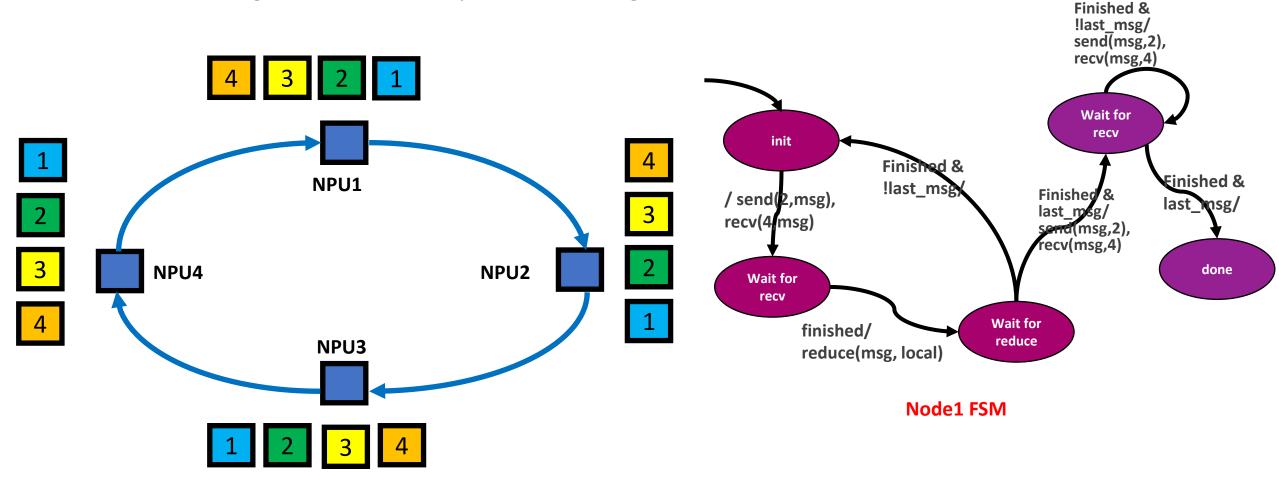


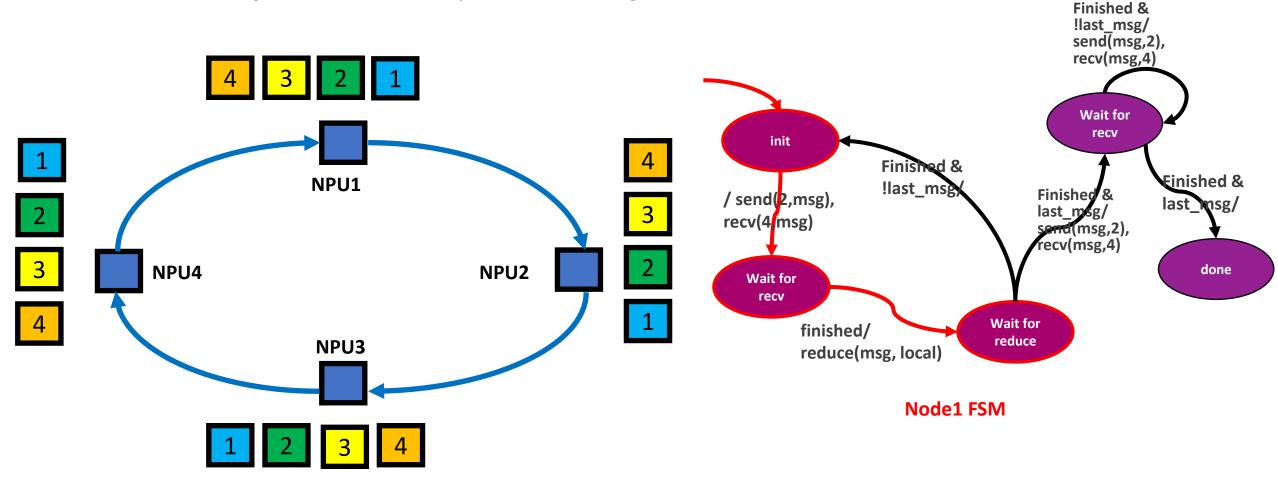
											u	rameter- update atency
< >	DLRM_HybridParallel.txt >	ĸ										
1	HYBRID_DLRM 4											
2	8 -											
3	Embedding	-1	300	ALLTOALL	98304	300	ALLTOALL	98304	300	NONE	0	98
4	MLP_Bottom_0	-1	1280	NONE	0	794	NONE	0	896	ALLREDUCE	13312	13
5	MLP_Bottom_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
6	MLP_Bottom_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
7	MLP_Bottom_3	-1	800	NONE	0	1280	NONE	0	800	ALLREDUCE	16384	16
8	MLP_Top_0	-1	6400	NONE	0	6400	NONE	0	4480	ALLREDUCE	1064960	1065
9	MLP_Top_1	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
10	MLP_Top_2	-1	2560	NONE	0	2560	NONE	0	1792	ALLREDUCE	524288	524
11												

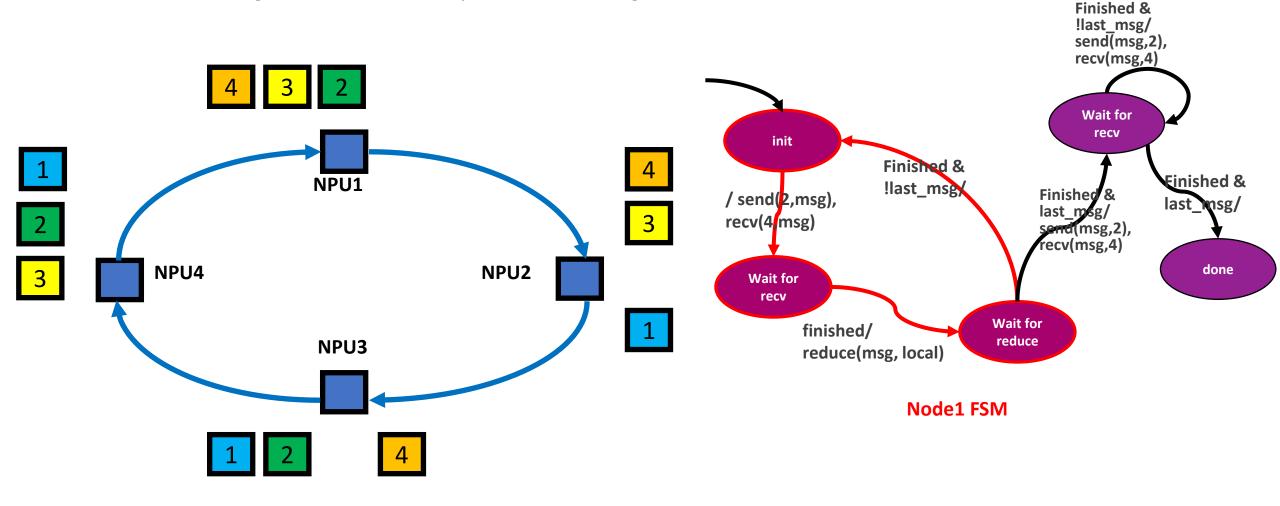
System Layer

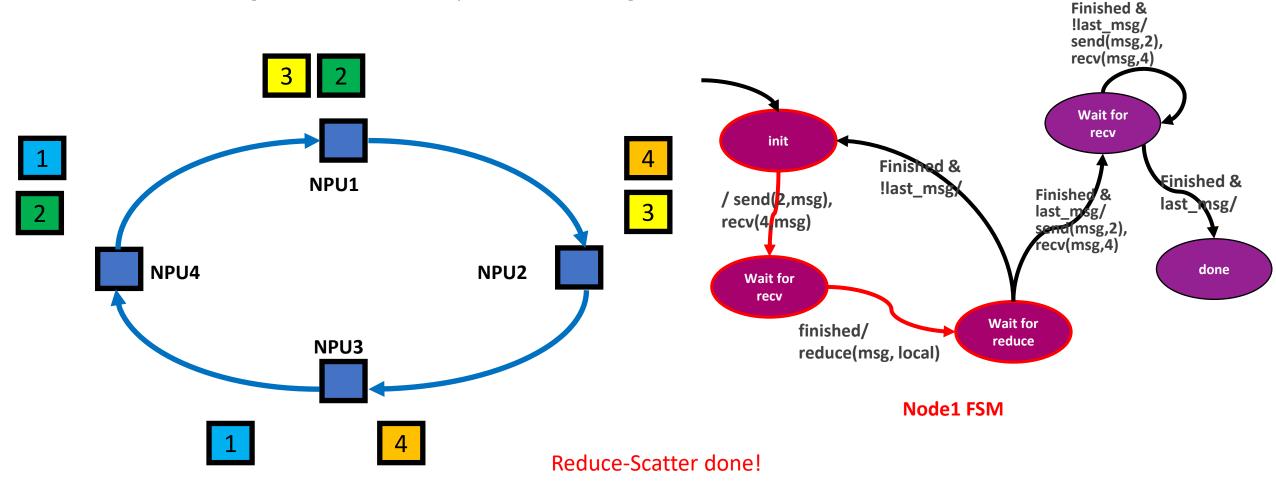
System Layer Collective Implementation

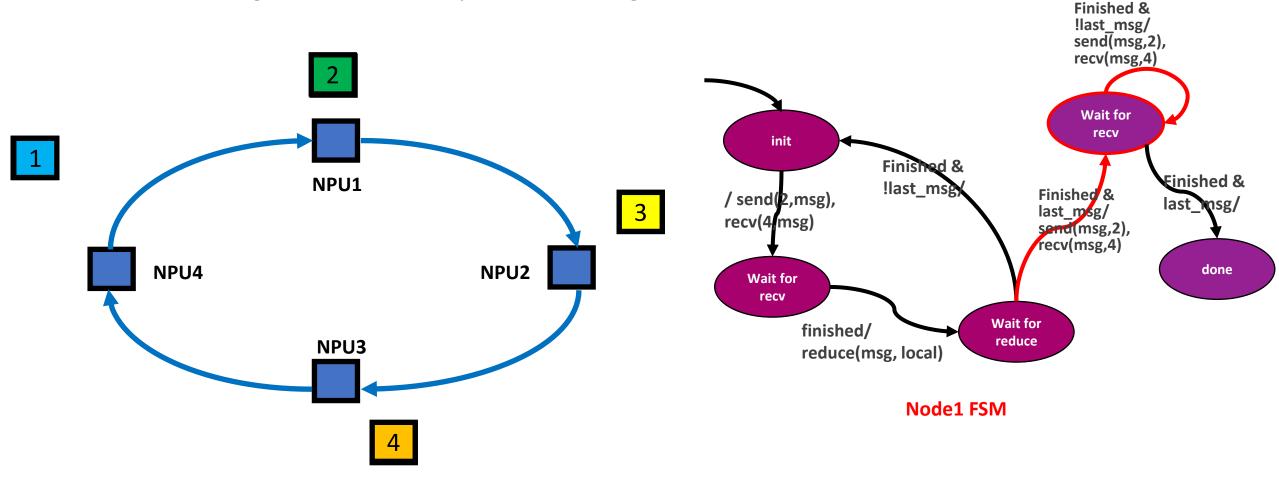
Code Structure

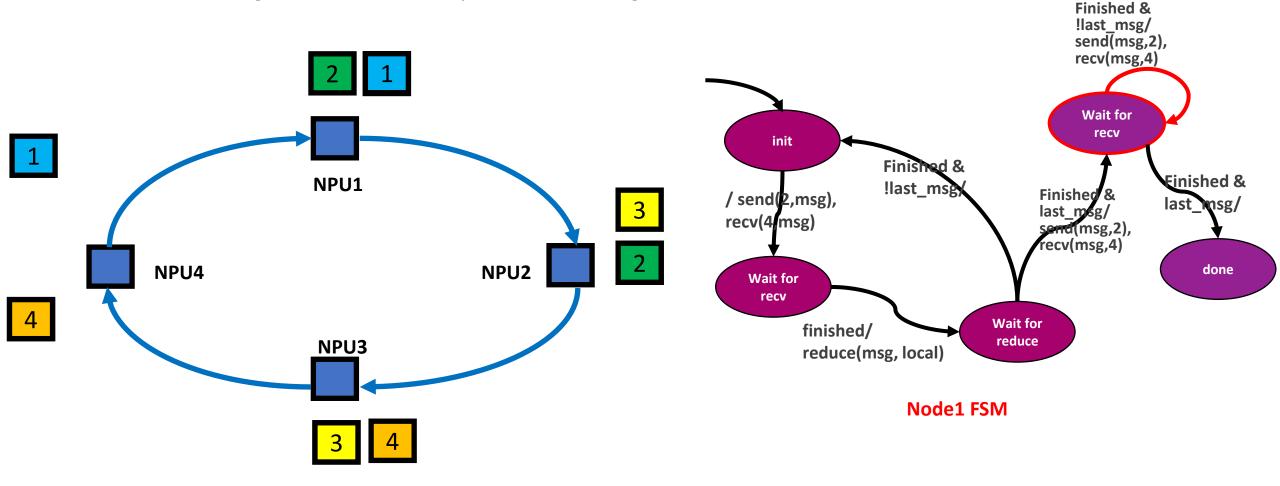


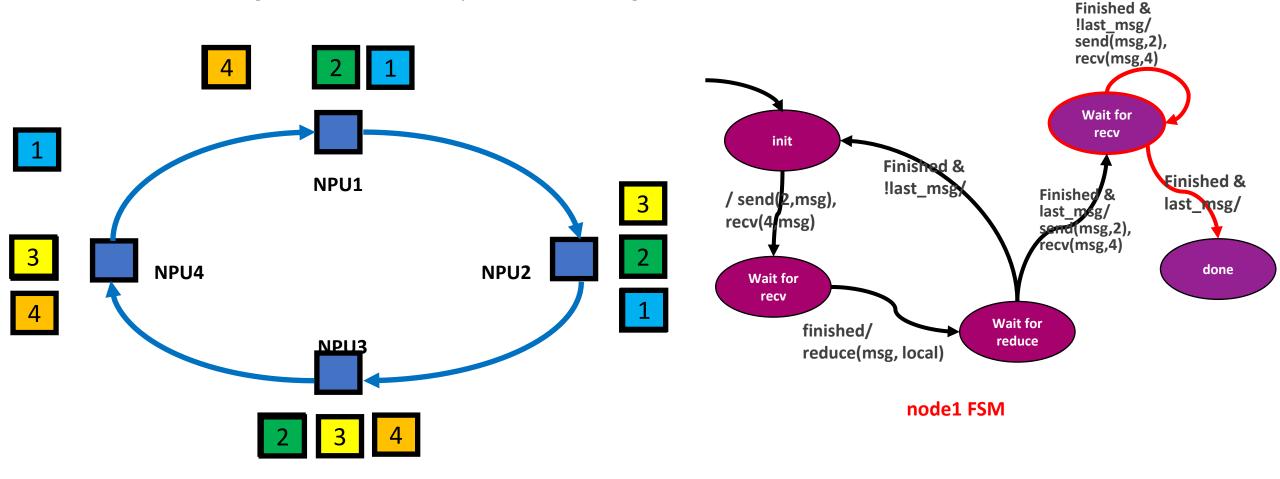

System Layer Collective Implementation

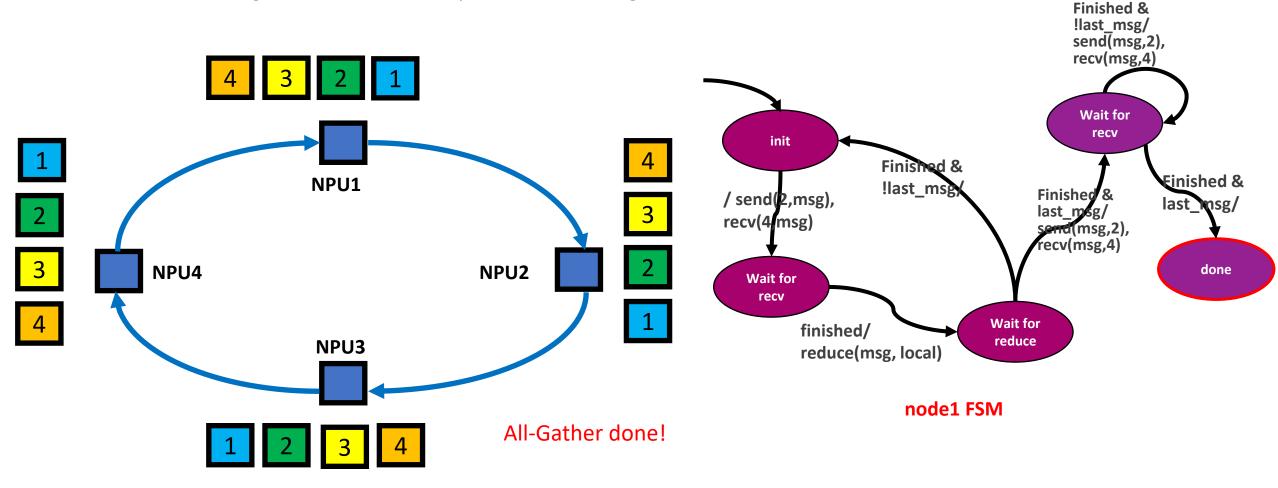

- Each collective algorithm works based on a logical topology.
- Logical topologies are implemented in "system/topology/*" and instantiated in sys.cc.
- Collective algorithms are implemented in "system/topology/*" and instantiated in sys.cc.
- Collective algorithms can be implemented using state machines.

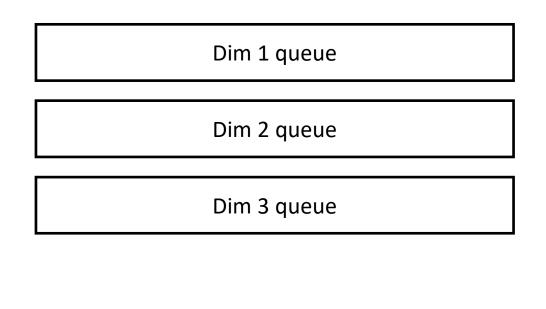

System Layer Collective Implementation

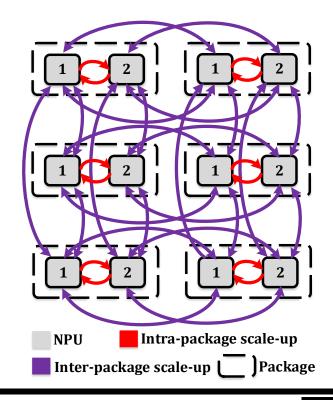

• Collective algorithms can be implemented using **state machines**.

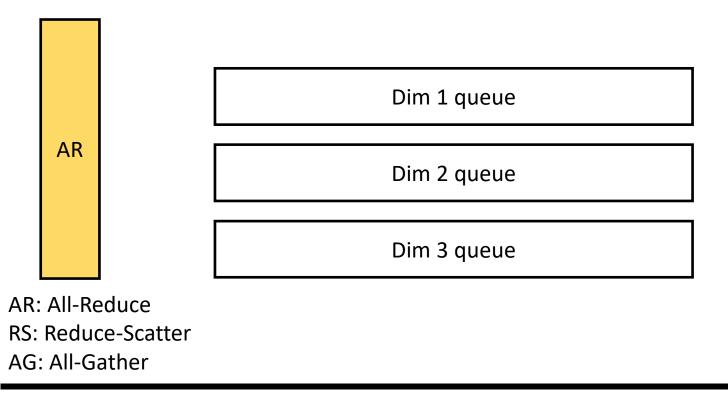


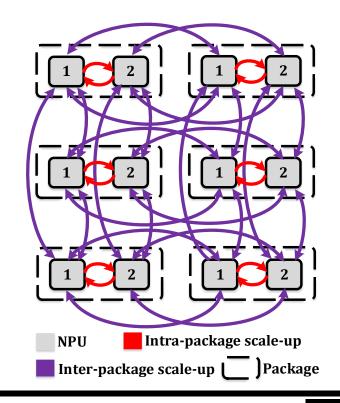


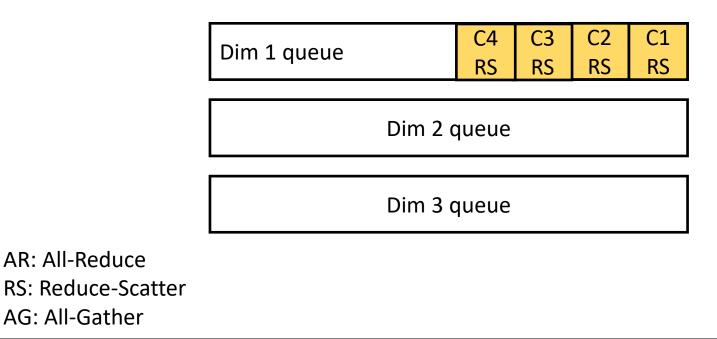


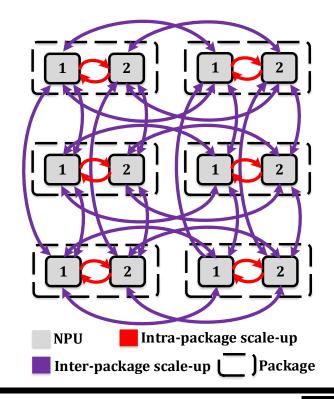


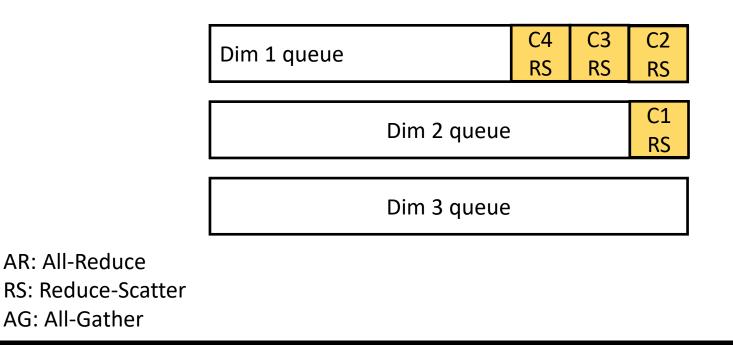


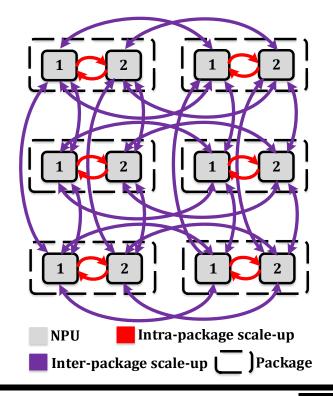



- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

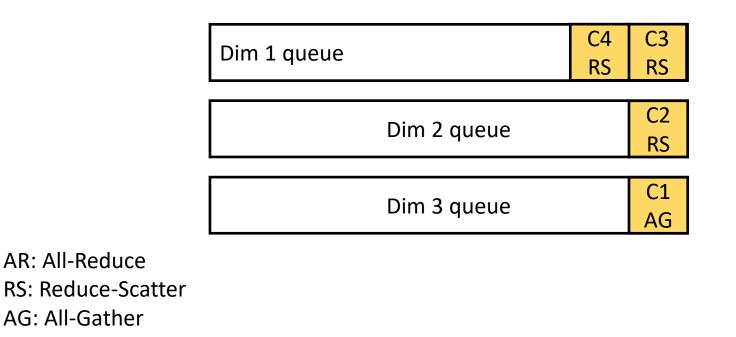


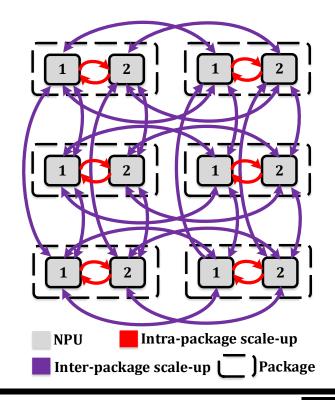

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.


- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

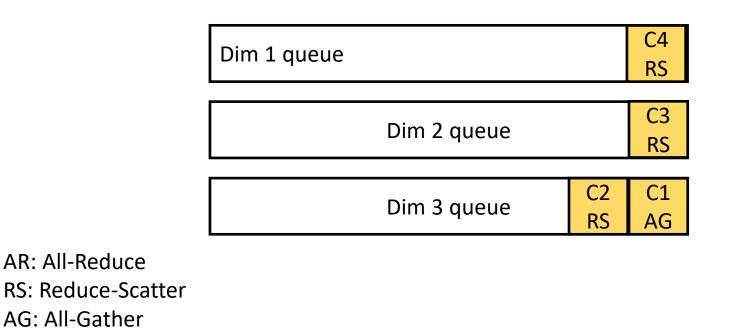


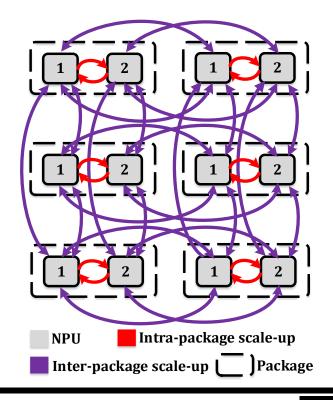
AR: All-Reduce


- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

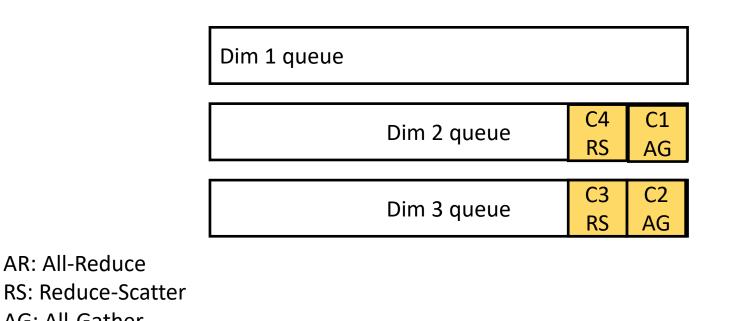


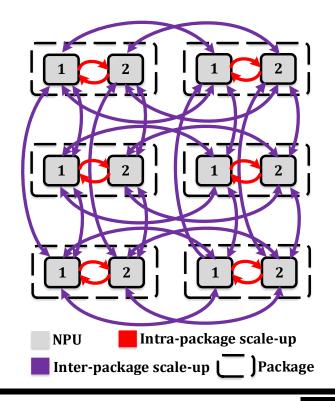
AR: All-Reduce


- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

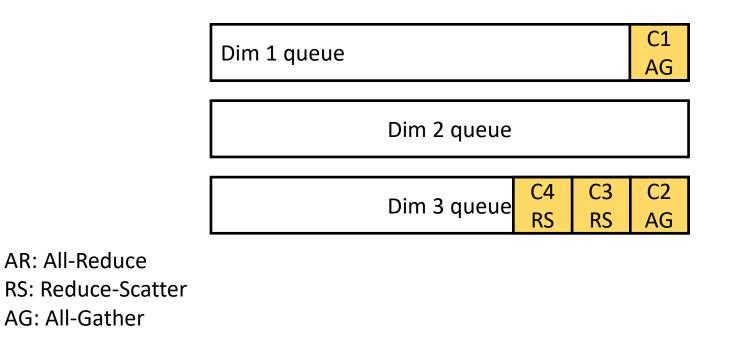


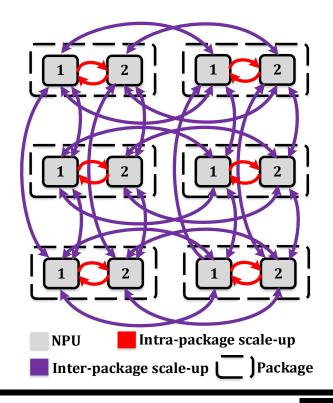
AR: All-Reduce

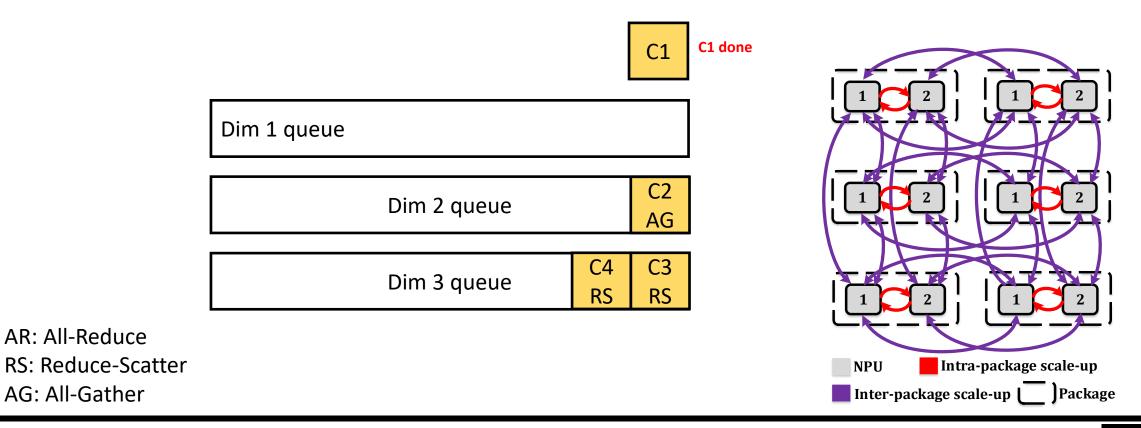

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

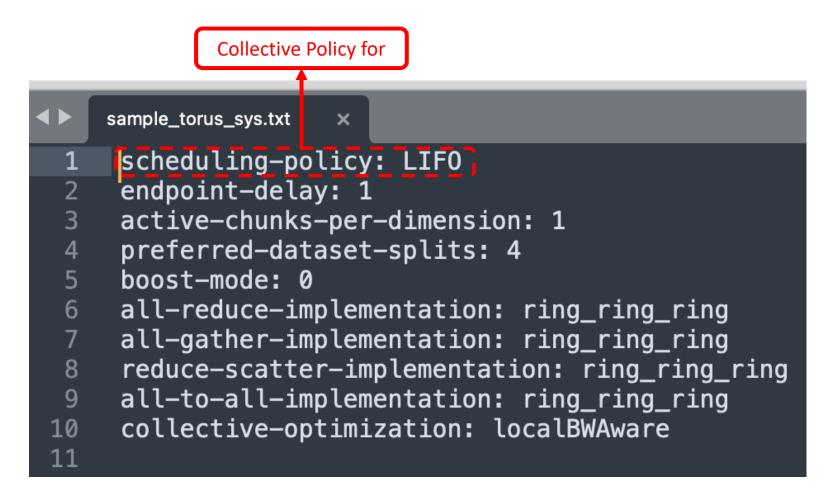


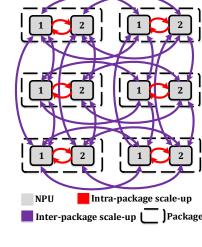
AR: All-Reduce

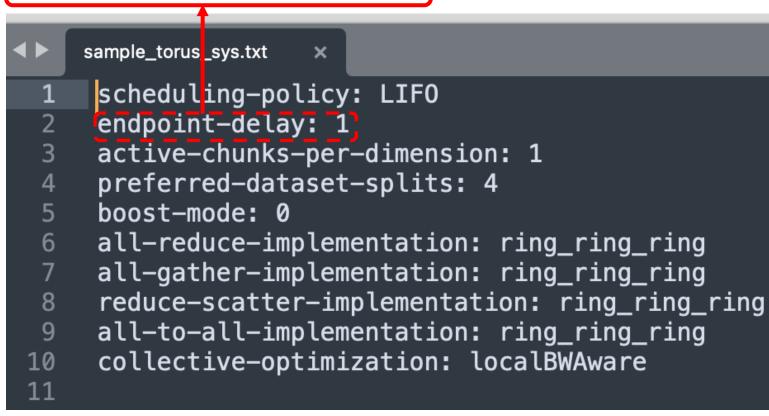

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

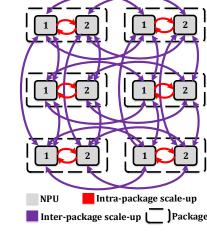


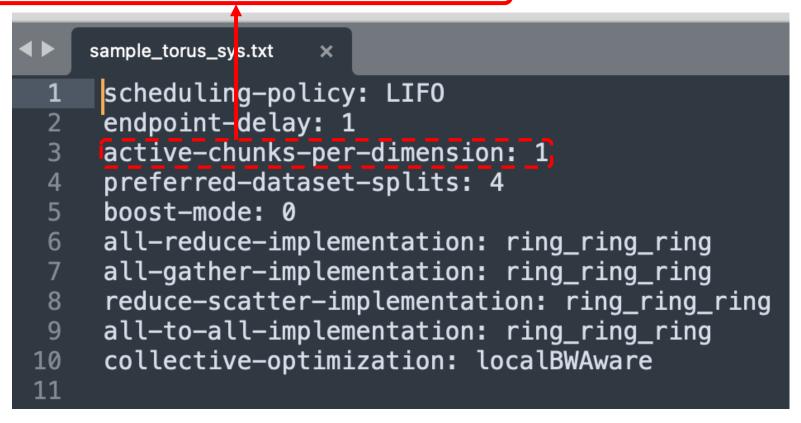

AR: All-Reduce

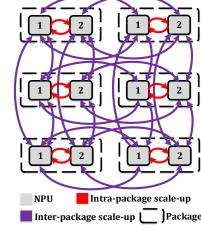

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

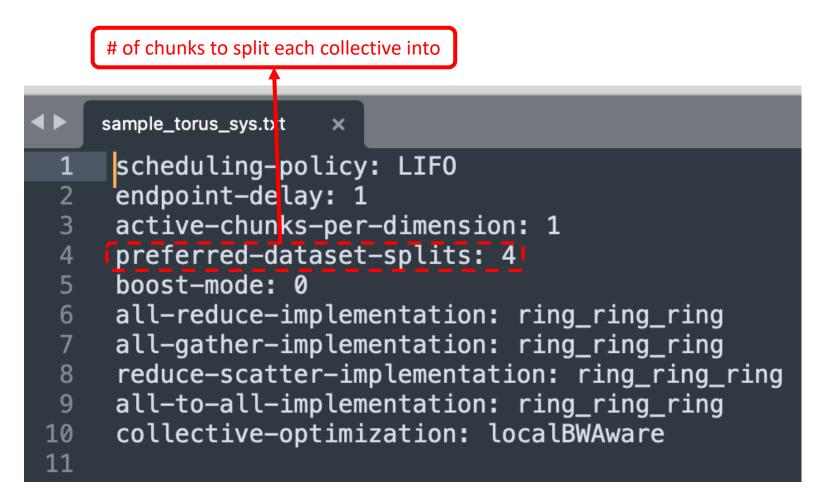


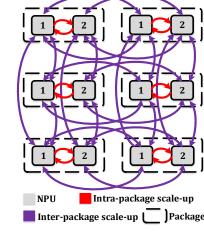

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

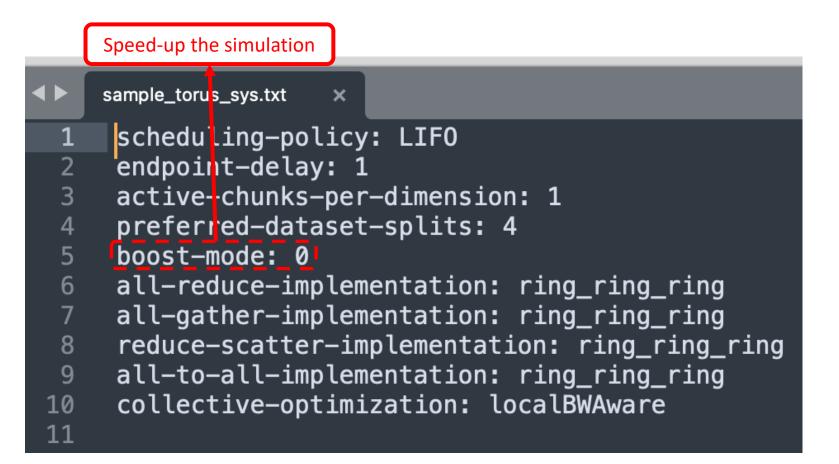


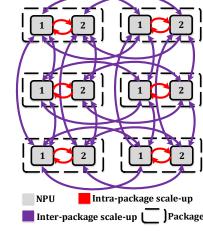


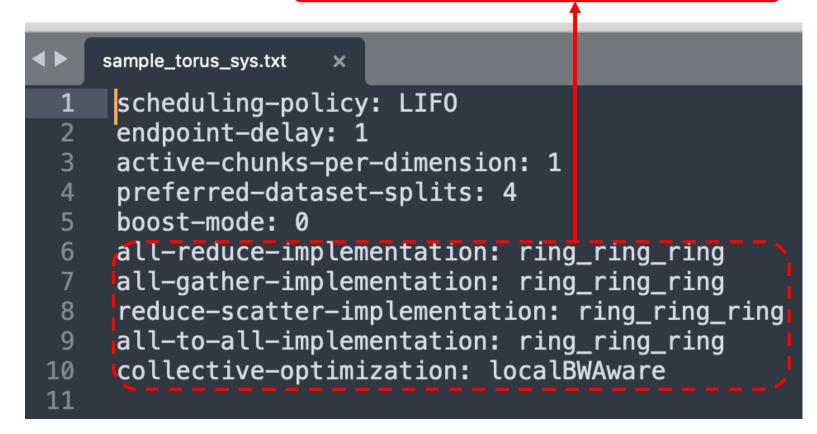

Constant delay before NPU sending a message

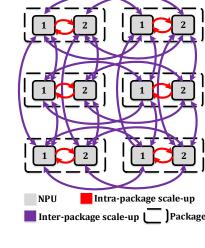




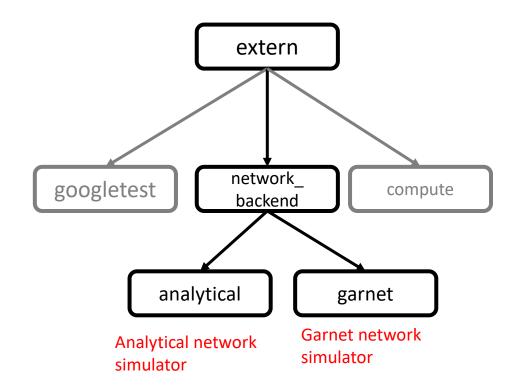

Max running chunks per each physical network dimension







Hierarchical collective algorithm implementation



Network Layer

Network Layer Structure

• Network backends are maintained separately and are imported as submodule.

Simulation Control Flow

- The main file is implemented inside network layer.
- Network layer creates corresponding System and NetworkAPI instances.
- **Network Layer** void main(){ Each system layer instance **internally** creates its workload layer instance. Where do instantiations happen? Instantiate NetworkAPI[]; **Analytical backend:** analytical/src/main.cc Instantiate System[]; **Garnet backend:** garnet/gem5_astra/src/mem/ruby/network/garnet2.0/NetworkInterface.cc for(auto &s:system){ s->workload.fire(); process all events(); return;

Garnet vs. Analytical

 Regular topologies + topology-aware collectives make traffic patterns to be congestionless (in most cases), enabling analytical backend to calculate latencies fast and accurately.

Analytical	Garnet
Supports hierarchical topologies	Supports switch-based and torus-based topologies
Each level in hierarchy can be switch, ring, FC	Supports credit-based flow control
Uses simple link latency, BW analytical model to get latency.	Performs packetization, flow control, congestion modeling, etc.
Fast	Slow for large systems & big models
Accurate when comm patterns are congestionless.	Accurate in all scenarios.

Network Input

Garnet network input

< >	sample_torus.txt
1	num-npus: 12
2	num-packages: 6
3	package-rows: 3
4	topology: Torus3D
5	local-rings: 2
6	vertical-rings: 1
7	horizontal-rings: 1
8	flit-width: 2048
9	local-packet-size: 4096
10	package-packet-size: 4096
11	tile-link-width: 256
12	package-link-width: 256
13	vcs-per-vnet: 50
14	routing-algorithm: Ring_XY
15	router-latency: 1
16	local-link-latency: 90
17	<pre>package-link-latency: 200</pre>
18	buffers-per-vc: 5000
19	local-link-efficiency: 1.0
20	package-link-efficiency: 1.0
21	

Analytical network input

```
sample_Torus3D.json
      "topology-name": "Hierarchical",
 3
       "topologies-per-dim": ["Ring", "Ring", "Ring"],
 4
       "dimension-type": ["N", "N", "N"],
 5
       "dimensions-count": 3,
       "units-count": [2, 2, 3],
 6
       "links-count": [2, 2, 2],
       "link-latency": [10, 100, 100],
 8
       "link-bandwidth": [32, 16, 16],
 9
       "nic-latency": [0, 0, 0],
10
       "router-latency": [0, 0, 0],
11
12
       "hbm-latency": [500, 500, 500],
13
       "hbm-bandwidth": [370, 370, 370],
14
       "hbm-scale": [0, 0, 0]
15
```

NPU

Intra-package scale-up

📕 Inter-package scale-up 🚺)Package

ASTRA-SIM Run Script

A Sample Run Script

```
run_DLRM_analytical.sh ×
#! /bin/bash -v
  1
     # Absolue path to this script
     SCRIPT_DIR=$(dirname "$(realpath $0)")
     # Absolute paths to useful directories
     BINARY="${SCRIPT DIR:?}"/../build/astra analytical/build/AnalyticalAstra/bin/AnalyticalAstra
     NETWORK="${SCRIPT_DIR:?}"/../inputs/network/analytical/sample_Torus3D.json
     SYSTEM="${SCRIPT_DIR:?}"/../inputs/system/sample_torus_sys.txt
     WORKLOAD="${SCRIPT_DIR:?}"/../inputs/workload/DLRM_HybridParallel.txt
 10
     STATS="${SCRIPT DIR:?}"/results/run DLRM analytical
11
12
     rm -rf "${STATS}"
13
14
     mkdir "${STATS}"
15
16
     "${BINARY}" \
     --network-configuration="${NETWORK}" \
17
     --system-configuration="${SYSTEM}" \
18
     --workload-configuration="${WORKLOAD}" \
19
20
     --path="${STATS}/" \
21
     --run-name="sample DLRM" \
22
     --num-passes=2 \
23
     --total-stat-rows=1 \
24
     --stat-row=0
25
26
```

A Sample Run Script

```
run_DLRM_analytical.sh ×
#! /bin/bash -v
  2
     # Absolue path to this script
     SCRIPT_DIR=$(dirname "$(realpath $0)")
  5
     # Absolute paths to useful directories
     BINARY="${SCRIPT_DIR:?}"/../build/astra_analytical/build/AnalyticalAstra/bin/AnalyticalAstra
     NETWORK="${SCRIPT_DIR:?}"/../inputs/network/analytical/sample_Torus3D.json
     SYSTEM="${SCRIPT_DIR:?}"/../inputs/system/sample_torus_sys.txt
     WORKLOAD="${SCRIPT_DIR:?}"/../inputs/workload/DLRM_HybridParallel.txt
10
     STATS="${SCRIPT DIR:?}"/results/run DLRM analytical
11
12
     rm -rf "${STATS}"
13
14
     mkdir "${STATS}"
15
16
     "${BINARY}" \
     --network-configuration="${NETWORK}" \
17
     --system-configuration="${SYSTEM}"
18
19
     --workload-configuration="${WORKLOAD}"
20
     --path="${STATS}/" \
21
     --run-name="sample DLRM" \
22
     --num-passes=2 \
23
     --total-stat-rows=1 \
24
     --stat-row=0
25
26
```

ASTRA-SIM Reports

• Endtoend.csv.

Layer name													
В	С	D	E	F	G	Н	1	J	К	L	Μ	N	0
1	fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed ccfw	d total con	wg total com	ig total comr	workload fin	i total comp	total exposed	comm
2 conv1sample_Resnet	26.006	64.582	0	0	17.364	0	0	17.366	0	4875.201	2164.9	2710.301	
3 layer_64_1_csample_Resnet	6.912	14.976	7.296	0	0	0	0	4.796	0	4875.201	_		
4 layer_64_1_csample_Resnet	6.912	14.976	6.912	0	0	0	0	27.08	0	4875.201	_		
5 layer_64_1_csample_Resnet	21.888	28.288	20.736	0	0	0	0	47.906	0	4875.201	_		
6 layer_64_1_csample_Resnet	6.912	14.976	7.296	0	0	0	0	13.648	0	4875.201	_		
7 layer_64_2_csample_Resnet	7.296	19.968	6.912	0	0	0	0	10.166	0	4875.201	-		
8 layer_64_2_csample_Resnet	21.888	28.288	20.736	0	0	0	0	20.102	0	4875.201	_		
9 layer_64_2_csample_Resnet	6.912	14.976	7.296	0	0	0	0	22.048	0	4875.201	_		
10 layer_64_3_csample_Resnet	7.296	19.968	6.912	0	0	0	0	30.082	0	4875.201	_		
11 layer_64_3_csample_Resnet	21.888	28.288	20.736	0	0	0	0	11.334	0	4875.201	_		
12 layer_64_3_csample_Resnet	6.912	14.976	7.296	0	0	0	0	7.526	0	4875.201	-		
13 layer_128_1 sample_Resnet	5.184	12.288	5.184	0	0	0	0	36.03	0	4875.201	-		
14 layer_128_1 sample_Resnet	7.296	19.968	7.04	0	0	0	0	9.08	0	4875.201	_		
15 layer_128_1 sample_Resnet	12.96	13.312	11.68	0	0	0	0	28.13	0	4875.201	_		
16 layer_128_1 sample_Resnet	4.672	10.24	5.184	0	0	0	0	13.272	0	4875.201	-		
17 layer_128_2 sample_Resnet	5.184	8.192	4.672	0	0	0	0	30.868	0	4875.201	-		
18 layer_128_2 sample_Resnet	12.96	13.312	11.68	0	0	0	0	33.952	0	4875.201	-		
19 layer_128_2 sample_Resnet	4.672	10.24	5.184	0	0	0	0	101.056	0	4875.201	-		

• Endtoend.csv.

		Run nam	ne 📃 📃												
	А		С	D	E	F	G	Н	I	J	K	L	Μ	Ν	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed	ig exposed c	fwd total co	on wg total com	ig total comnw	vorkload fini t	otal comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0	0	17.364	0		0 17.366	0	4875.201	2164.9	2710.301	
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0		0 4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	0	0	0		0 27.08	0	4875.201			
5	layer_64_1_	sample_Resnet	21.888	28.288	20.736	0	0	0		0 47.906	0	4875.201			
6	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0		0 13.648	0	4875.201			
7	layer_64_2_	sample_Resnet	7.296	19.968	6.912	0	0	0		0 10.166	0	4875.201			
8	layer_64_2_	sample_Resnet	21.888	28.288	20.736	0	0	0		0 20.102	0	4875.201			
9	layer_64_2_	sample_Resnet	6.912	14.976	7.296	0	0	0		0 22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	0	0	0		0 30.082	0	4875.201			
11	layer_64_3_	sample_Resnet	21.888	28.288	20.736	0	0	0		0 11.334	0	4875.201			
12	layer_64_3_	sample_Resnet	6.912	14.976	7.296	0	0	0		0 7.526	0	4875.201			
13	layer_128_1	sample_Resnet	5.184	12.288	5.184	0	0	0		0 36.03	0	4875.201			
14	layer_128_1	sample_Resnet	7.296	19.968	7.04	0	0	0		0 9.08	0	4875.201			
15	layer_128_1	sample_Resnet	12.96	13.312	11.68	0	0	0		0 28.13	0	4875.201			
16	layer_128_1	sample_Resnet	4.672	10.24	5.184	0	0	0		0 13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	0	0	0		0 30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	0	0	0		0 33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	0	0	0		0 101.056	0	4875.201			

• Endtoend.csv. Compute times (us)

	А	В	С	D	E	F	G	Н	I	J	К	L	Μ	N	0
1]	fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed c	fwd total co	n wg total com	ig total comr	workload fini	total comp	total exposed	comm
2	conv1	sample_Resnet	2 <u>6.</u> 006	<u>6</u> 4. <u>5</u> 82	0	0	17.364	() (17.366	0	4875.201	2164.9	2710.301	
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	((4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	0	0	() (27.08	0	4875.201			
5	layer_64_1_	sample_Resnet	21.888	28.288	20.736	0	0	() (47.906	0	4875.201			
6	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	() (13.648	0	4875.201			
7	layer_64_2_	sample_Resnet	7.296	19.968	6.912	0	0	() (10.166	0	4875.201			
8	layer_64_2_	sample_Resnet	21.888	28.288	20.736	0	0	() (20.102	0	4875.201			
9	layer_64_2_	sample_Resnet	6.912	14.976	7.296	0	0	() (22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	0	0	() (30.082	0	4875.201			
11	layer_64_3_	sample_Resnet	21.888	28.288	20.736	0	0	() (11.334	0	4875.201			
12	layer_64_3_	sample_Resnet	6.912	14.976	7.296	0	0	() (7.526	0	4875.201			
13	layer_128_1	sample_Resnet	5.184	12.288	5.184	0	0	() (36.03	0	4875.201			
14	layer_128_1	sample_Resnet	7.296	19.968	7.04	0	0	() (9.08	0	4875.201			
15	layer_128_1	sample_Resnet	12.96	13.312	11.68	0	0	() (28.13	0	4875.201			
16	layer_128_1	sample_Resnet	4.672	10.24	5.184	0	0	() (13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	0	0	((30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	0	0	((33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	0	0	() (101.056	0	4875.201			

• Endtoend.csv.

Raw communication times (us)

	А	В	С	D	E	F	G	Н	I	J	К	L	Μ	Ν	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed	ig exposed co	fwd total cor	rwg total com	ig total comn	workload fini	total comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0	0	17.364	0	0	17.366	0	4875.201	2164.9	2710.301	
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	0	0	0	0	27.08	0	4875.201			
5	layer_64_1_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	47.906	0	4875.201			
6	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	13.648	0	4875.201			
7	layer_64_2_	sample_Resnet	7.296	19.968	6.912	0	0	0	C	10.166	0	4875.201			
8	layer_64_2_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	20.102	0	4875.201			
9	layer_64_2_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	0	0	0	C	30.082	0	4875.201			
11	layer_64_3_	sample_Resnet	21.888	28.288	20.736	0	0	0	C	11.334	0	4875.201			
12	layer_64_3_	sample_Resnet	6.912	14.976	7.296	0	0	0	C	7.526	0	4875.201			
13	layer_128_1	sample_Resnet	5.184	12.288	5.184	0	0	0	C	36.03	0	4875.201			
14	layer_128_1	sample_Resnet	7.296	19.968	7.04	0	0	0	C	9.08	0	4875.201			
15	layer_128_1	sample_Resnet	12.96	13.312	11.68	0	0	0	0	28.13	0	4875.201			
16	layer_128_1	sample_Resnet	4.672	10.24	5.184	0	0	0	0	13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	0	0	0	C	30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	0	0	0	C	33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	0	0	0	0	101.056	0	4875.201			

• Endtoend.csv.

Exposed communication times (us)

	А	В	С	D	E	F	G	Н	I	J	К	L	Μ	Ν	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed co	fwd total con	wg total com i	g total comnw	vorkload fini	total comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0		<u>1</u> 7. <u>36</u> 4	0	0	17.366	0	4875.201	2164.9	2710.301	
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	0	0	0	0	27.08	0	4875.201			
5	layer_64_1_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	47.906	0	4875.201			
6	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	13.648	0	4875.201			
7	layer_64_2_	sample_Resnet	7.296	19.968	6.912	0	0	0	0	10.166	0	4875.201			
8	layer_64_2_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	20.102	0	4875.201			
9	layer_64_2_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	0	0	0	0	30.082	0	4875.201			
11	layer_64_3_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	11.334	0	4875.201			
12	layer_64_3_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	7.526	0	4875.201			
13	layer_128_1	sample_Resnet	5.184	12.288	5.184	0	0	0	0	36.03	0	4875.201			
14	layer_128_1	sample_Resnet	7.296	19.968	7.04	0	0	0	0	9.08	0	4875.201			
15	layer_128_1	sample_Resnet	12.96	13.312	11.68	0	0	0	0	28.13	0	4875.201			
16	layer_128_1	sample_Resnet	4.672	10.24	5.184	0	0	0	0	13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	0	0	0	0	30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	0	0	0	0	33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	0	0	0	0	101.056	0	4875.201			

Overall Results

• Endtoend.csv.

Total compute & exposed communication times across all layers (us)

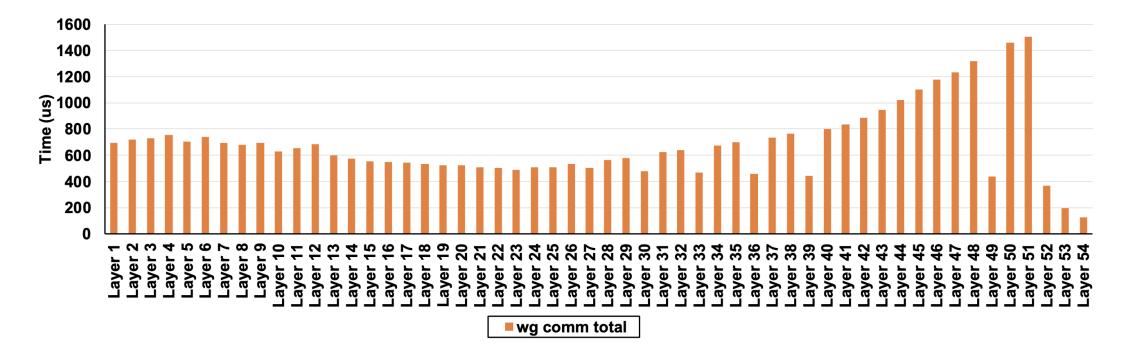
	А	В	С	D	E	F	G	Н	I	J	J	К	L	М	N	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed	ig exposed co	fwd total	con wg tot	al com	ig total comn	workload fini	total comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0	0	17.364	0		0	17.366	0	4875.201	2 <u>16</u> 4.9	27 <u>10</u> .301	
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	C	0		0	4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	0	C	0		0	27.08	0	4875.201			
5	layer_64_1_	sample_Resnet	21.888	28.288	20.736	0	C	0		0 4	47.906	0	4875.201			
6	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	C	0		0	13.648	0	4875.201			
7	layer_64_2_	sample_Resnet	7.296	19.968	6.912	0	C	0		0	10.166	0	4875.201			
8	layer_64_2_	sample_Resnet	21.888	28.288	20.736	0	C	0		0 2	20.102	0	4875.201			
9	layer_64_2_	sample_Resnet	6.912	14.976	7.296	0	C	0		0 2	22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	0	C	0		0 3	30.082	0	4875.201			
11	layer_64_3_	sample_Resnet	21.888	28.288	20.736	0	C	0		0	11.334	0	4875.201			
12	layer_64_3_	sample_Resnet	6.912	14.976	7.296	0	C	0		0	7.526	0	4875.201			
13	layer_128_1	sample_Resnet	5.184	12.288	5.184	0	C	0		0	36.03	0	4875.201			
14	layer_128_1	sample_Resnet	7.296	19.968	7.04	0	C	0		0	9.08	0	4875.201			
15	layer_128_1	sample_Resnet	12.96	13.312	11.68	0	C	0		0	28.13	0	4875.201			
16	layer_128_1	sample_Resnet	4.672	10.24	5.184	0	C	0		0	13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	0	C	0		0 3	30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	0	C	0		0 3	33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	0	C	0		0 10	01.056	0	4875.201			

Overall Results

• Detailed.csv.

Average chunk queueing delay per each collective phase (us)

	Α	В	С	D	E	F	G	Н	I	J	К	L	M
1			queuing d	queuing delay phase 1	queuing delay phase 2	queuing delay phase 3	queuing delay phase 4	queuing delay phase 5	network delay phase 1	network delay phase 2	network delay phase 3	network delay phase 4	network delay phase 5
2	conv1	sample_Resnet	0	1.8795	0.5455	0	0.137	2.3579	0.035	0.018	0.005	0.018	0.035
3	layer_64_1_	sample_Resnet	0	0.453	0.03925	0	0.02725	0.2425	0.06	0.03	0.008	0.03	0.06
4	layer_64_1_	sample_Resnet	0	2.9225	2.3655	0	0.065	7.1915	0.015	0.008	0.002	0.008	0.015
5	layer_64_1_	sample_Resnet	0	6.8005	2.5125	1.2645	3.2625	6.7425	0.135	0.068	0.017	0.068	0.135
6	layer_64_1_	sample_Resnet	0	2.013	0.412	0	0.227	2.536	0.06	0.03	0.008	0.03	0.06
7	layer_64_2_	sample_Resnet	0	2.889	0.03925	0	0.02725	0.2425	0.06	0.03	0.008	0.03	0.06
8	layer_64_2_	sample_Resnet	0	5.9785	0.08275	0	0.07075	0.5485	0.135	0.068	0.017	0.068	0.135
9	layer_64_2_	sample_Resnet	0	1.901	2.947	0	0.227	4.313	0.06	0.03	0.008	0.03	0.06
10	layer_64_3_	sample_Resnet	0	5.669	1.306	0	0.227	5.954	0.06	0.03	0.008	0.03	0.06
11	layer_64_3_	sample_Resnet	0	1.5945	0.08275	0	0.07075	0.5485	0.135	0.068	0.017	0.068	0.135
12	layer_64_3_	sample_Resnet	0	0.383	0.409	0	0.227	1.108	0.06	0.03	0.008	0.03	0.06
13	layer_128_1	sample_Resnet	0	6.6015	0.4635	0	0.262	3.0585	0.477	0.239	0.06	0.239	0.477
14	layer_128_1	sample_Resnet	0	1.176	0.07225	0	0.06325	0.4915	0.12	0.06	0.015	0.06	0.12
15	layer_128_1	sample_Resnet	0	2.9015	0.31	0	0.2935	2.2045	0.537	0.269	0.068	0.269	0.537
16	layer_128_1	sample_Resnet	0	1.4375	0.14125	0	0.12925	0.9775	0.239	0.12	0.03	0.12	0.239
17	layer_128_2	sample_Resnet	0	1.3395	2.3275	0	0.905	4.1295	0.239	0.12	0.03	0.12	0.239
18	layer_128_2	sample_Resnet	0	2.9285	0.37	0	0.487	3.393	0.537	0.269	0.068	0.269	0.537
19	layer_128_2	sample_Resnet	0	6.5115	0.8545	0.8115	8.02825	20.68175	0.239	0.12	0.03	0.12	0.239
20	layer_128_3	sample_Resnet	0	4.6365	0.42475	0.01275	0.549	16.7855	0.239	0.12	0.03	0.12	0.239
24	1 100 0	t- nt	^	2 0005	40.005	^	* * * *	F4 00F	0 5 2 7	0.000	0.000	0.000	0.537

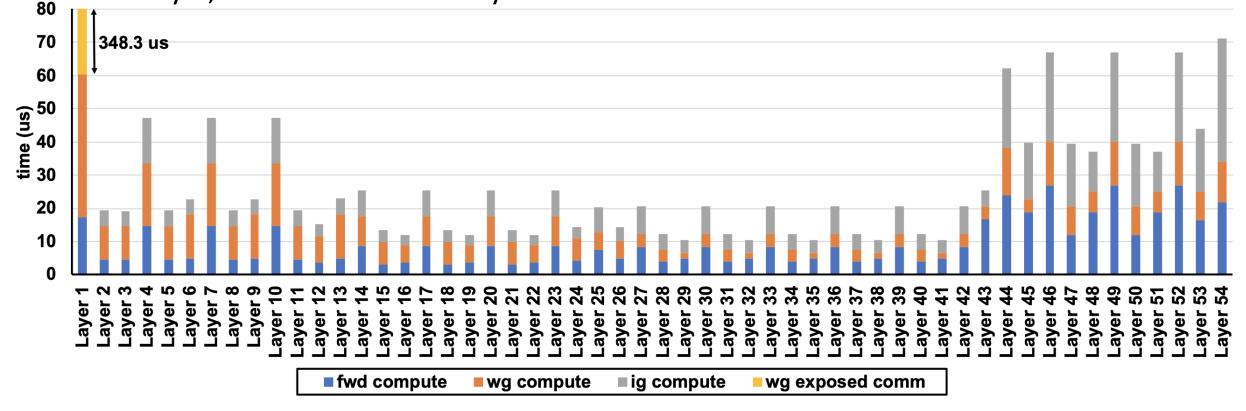

Overall Results

• Detailed.csv.

									Average	e message la	tency per ea	ch collective	phase (us)
	A	В	С	D	E	F	G	Н	I	J	К	L	М
1			queuing d	queuing delay phase 1	queuing delay phase 2	queuing delay phase 3	queuing delay phase 4	queuing delay phase 5	network delay phase 1	n <u>etwork delav</u> phase 2	network delay phase 3	network delay phase 4	network delay phase 5
2	conv1	sample_Resnet	0	1.8795	0.5455	0	0.137	2.3575	0.035	0.018	0.005	0.018	0.035
3	layer_64_1	sample_Resnet	0	0.453	0.03925	0	0.02725	0.2425			0.008		
4	layer_64_1	sample_Resnet	0	2.9225	2.3655	0	0.065	7.1915	0.015	0.008	0.002	0.008	0.015
5	layer_64_1	sample_Resnet	0	6.8005	2.5125	1.2645		6.7425			0.017		0.135
6	layer_64_1	sample_Resnet	0	2.013	0.412	0	0.227	2.536	0.06	0.03	0.008	0.03	0.06
7	layer_64_2	sample_Resnet	0	2.889	0.03925	0	0.02725	0.2425	0.06	0.03	0.008	0.03	0.06
8	layer_64_2	sample_Resnet	0	5.9785	0.08275	0	0.07075	0.5485	0.135	0.068	0.017	0.068	0.135
9	layer_64_2	sample_Resnet	0	1.901	2.947	0	0.227	4.313			0.008		0.06
10	layer_64_3	sample_Resnet	0	5.669	1.306	0	0.227	5.954	0.06	0.03	0.008	0.03	0.06
11	layer_64_3	sample_Resnet	0	1.5945	0.08275	0	0.07075	0.5485		0.068	0.017	0.068	0.135
12	layer_64_3	sample_Resnet	0	0.383	0.409	0	0.227	1.108	0.06	0.03	0.008	0.03	0.06
13	layer_128_1	sample_Resnet	0	6.6015	0.4635	0	0.262	3.0585	0.477	0.239	0.06	0.239	0.477
14	layer_128_1	sample_Resnet	0	1.176	0.07225	0	0.06325	0.4915	0.12	0.06	0.015	0.06	0.12
15	layer_128_1	sample_Resnet	0	2.9015	0.31	0	0.2935	2.2045	0.537	0.269	0.068	0.269	0.537
16	layer_128_1	sample_Resnet	0	1.4375	0.14125	0	0.12925	0.9775	0.239	0.12	0.03	0.12	0.239
17	layer_128_2	sample_Resnet	0	1.3395	2.3275	0	0.905	4.1295	0.239	0.12	0.03	0.12	0.239
		sample_Resnet	0	2.9285	0.37	0	0.487	3.393	0.537	0.269	0.068	0.269	0.537
19	layer_128_2	sample_Resnet	0	6.5115	0.8545	0.8115	8.02825	20.68175			0.03	0.12	0.239
		sample_Resnet	0	4.6365	0.42475	0.01275	0.549	16.7855	0.239	0.12	0.03	0.12	0.239
24	1 120 1		•	2 2005	40.005	^		F4 00F	0 5 2 7	0.200	0.000	0.200	0 5 2 7

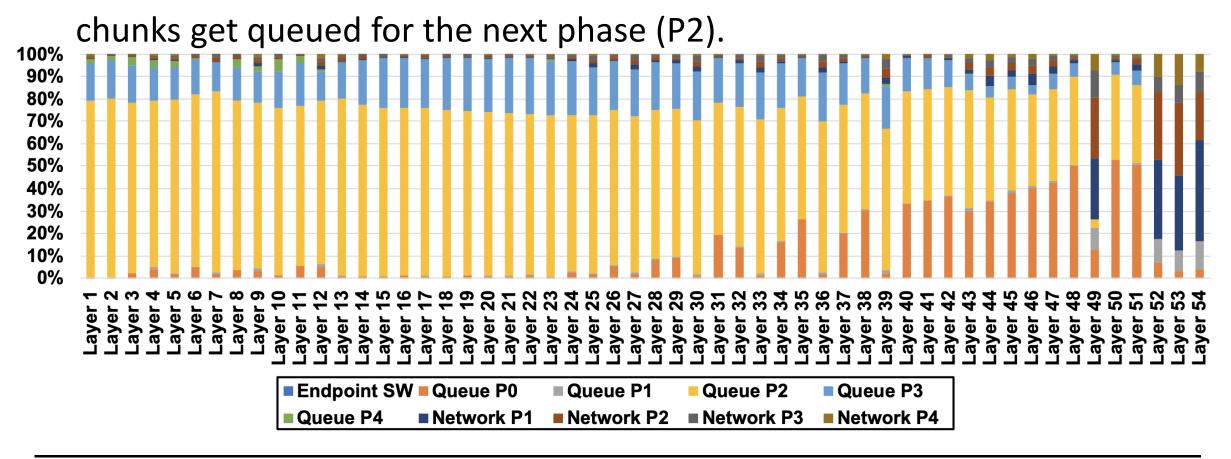
ResNet-50 Layer-Wise Raw Comm Latency

- A Torus 3D with total of 32 (2X4X4) nodes is used.
- Data parallel approach is used.
- Raw latency depends on the comm size plus the priority of each layer comm (queuing delay).

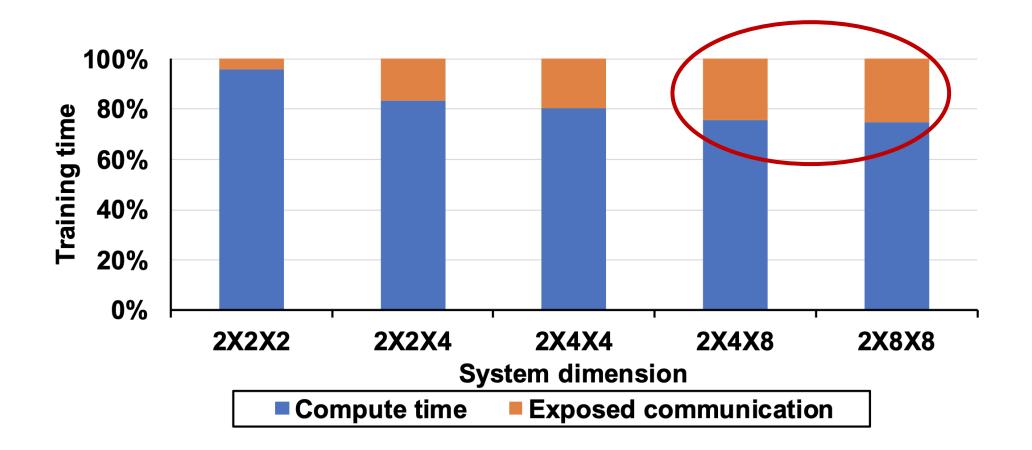


ResNet-50 Layer-Wise Compute vs. Exposed Comm Latency

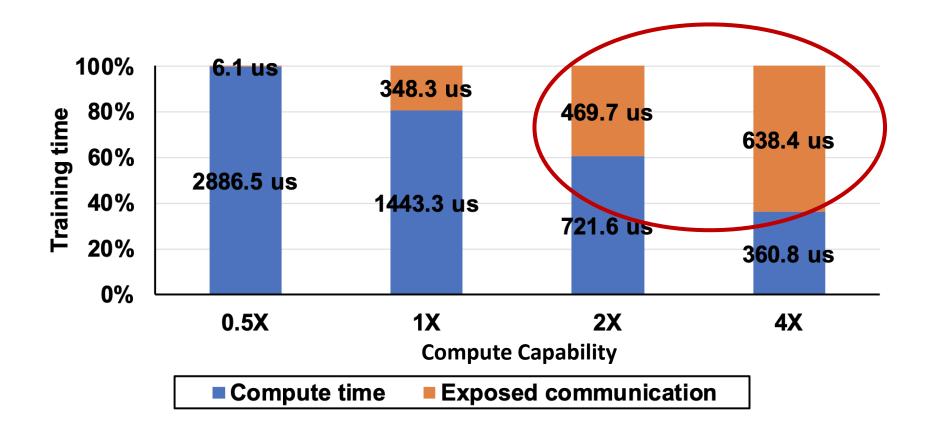
• Exposed comm latency is observed for the first layer.


because by the time we reach other layers except that.

first layer, their comm is already finished.


ResNet-50 Layer-Wise detailed latency

• Queue P2 is becoming the dominant factor due to very high speed of P1 (within package) that results most of the


Effect of # of nodes on the Ratio of Total Compute vs Total Exposed Comm for ResNet-50

• A Torus 3D with total of 8, 16, 32, 64, 128 nodes are used.

Effect of Enhanced Compute Time per Node on the Ratio of Total Compute vs Total Exposed Comm for ResNet-50

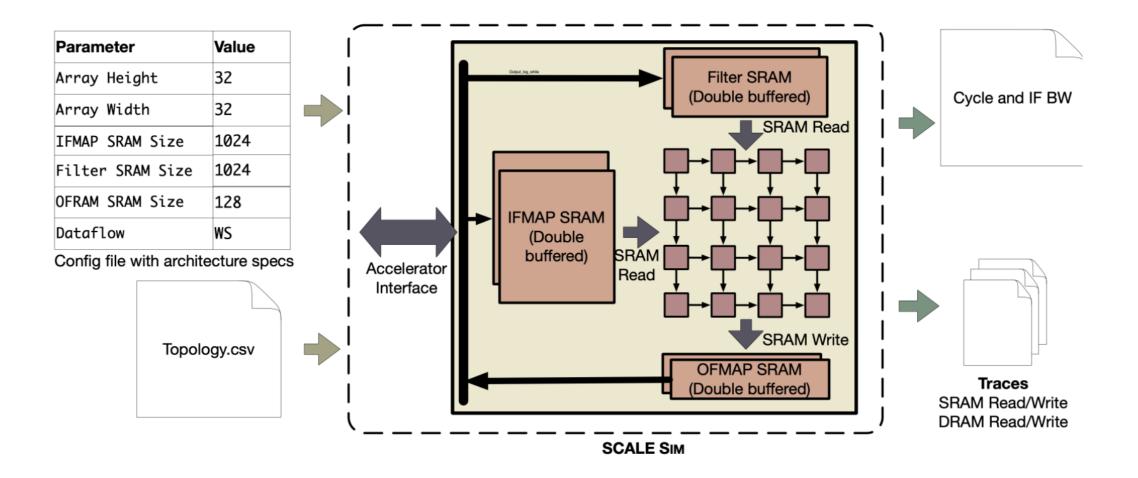
• A Torus 3D with total of 32 nodes (2X4X4) is used.

Workload Generator

Workload Generator

- Should receive the GEMM operations (M, N, K dimensions) and the parallelization strategy as input.
- It uses SCALE-SIM simulator to find the compute times.
- Please see astra-sim/scripts/workload_generator/README.md.

Sample script to call workload generator


```
# For data-parallel
$ python3 gen_astrasim_workload_input.py \
    --datatype_size=2 \
    --mnk=mnk_inputs/example.csv \
    --num_npus=16 \
    --num_packages=2 \
    --output_file=../../inputs/workload/example_DATA.txt \
    --parallel=DATA \
    --run_name=example \
    --scalesim_config=../../extern/compute/SCALE-Sim/configs/google.cfg \
    --scalesim_path=../../extern/compute/SCALE-Sim
```

Sample MNK input file

/	А	В	С	D	E
1	Layer	m	n	k	
2	MLP_Bottom	1024	128	512	
3	MLP_Bottom	1024	512	512	
4	MLP_Bottom	1024	512	512	
5	MLP_Bottom	1024	512	16	
6	MLP_Top_0	1024	1024	512	
7	MLP_Top_1	1024	512	512	
8	MLP_Top_2	1024	512	512	
9					
10					

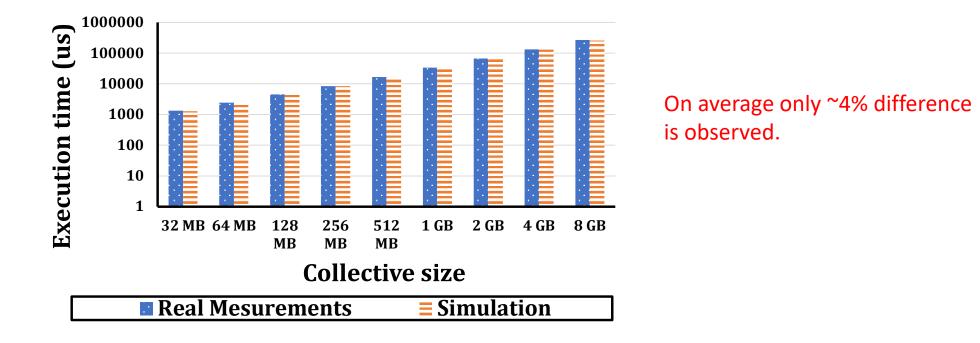
SCALE-SIM

<u>https://github.com/scalesim-project/scale-sim-v2</u>

Thank you!

Agenda

Time (EDT)	Торіс	Presenter
8:30 - 9:30	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna
9:30 - 10:30	ASTRA-sim	Saeed Rashidi
10:30 - 11:00	Coffee Break	
11:00 - 11:50	Demo and Exercises	William Won and Taekyung Heo
11:50 - 12:00	Extensions and Future Development	Taekyung Heo


Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/isca-2022</u>

Attention: Tutorial is being recorded

ASTRA-SIM Validation

- 8 servers, each having 8 V100 GPUs.
- GPUs within a server are connected through NVSwitch (first gen).
- Each GPU has a dedicated 100 Gbps NIC, connecting it to the TOR switch.
- Below is the single All-Reduce performance comparison of real system measurements vs. ASTRA-SIM with analytical backend.

