

ISCA Tutorial

June 19th, 2022

Enabling HW/SW Co-Design of Distributed Deep Learning Training Platforms

ASTRA-sim Tutorial

Tushar Krishna

Associate Professor, School of ECE Georgia Institute of Technology tushar@ece.gatech.edu

Welcome

Tushar Krishna
Associate Professor, School of ECE
Georgia Institute of Technology
tushar@ece.gatech.edu

Saeed Rashidi
PhD Student, School of ECE
Georgia Institute of Technology
saeed.rashidi@ece.gatech.edu

Will Won

Ph.D. Student, School of CS
Georgia Institute of Technology
william.won@gatech.edu

Taekyung Heo
Postdoctoral Fellow, School of ECE
Georgia Institute of Technology
tkheo@casys.kaist.ac.kr

Srinivas Sridharan Research Scientist, Meta

Presenters

Agenda

Time (EDT)	Topic	Presenter
8:30 – 9:30	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna
9:30 – 10:30	ASTRA-sim	Saeed Rashidi
10:30 - 11:00	Coffee Break	
11:00 – 11:50	Demo and Exercises	William Won and Taekyung Heo
11:50 – 12:00	Extensions and Future Development	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/isca-2022

Attention: Tutorial is being recorded

ASTRA-sim Installation

- Please go ahead and install ASTRA-sim!
- Instructions here:

Agenda

Time (EDT)	Topic	Presenter
8:30 – 9:30	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna
9:30 – 10:30	ASTRA-sim	Saeed Rashidi
10:30 - 11:00	Coffee Break	
11:00 – 11:50	Demo and Exercises	William Won and Taekyung Heo
11:50 – 12:00	Extensions and Future Development	Tushar Krishna and Saeed Rashidi

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/isca-2022

Attention: Tutorial is being recorded

The engine driving the AI Revolution

Training

Training a deep neural network (DNN) involves feeding it a training dataset to update its weights to model the underlying function representing the dataset

Object Detection

Speech Recognition

Understanding

Recommender Systems

"Training" in the context of ML

- Machine Learning algorithms learn to make decisions or predictions based on data.
- We can categorize current ML algorithms based on the following three characteristics
 - Feedback from data
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning
 - Reinforcement learning
 - Purpose / Task
 - Anomaly Detection
 - Classification
 - Clustering
 - Dimensionality Reduction
 - Representation Learning
 - Regression
 - Method (for hyperparameter optimization)
 - SGD
 - EA
 - Rule-based
 - Topic Models
 - ..

We focus on Supervised Learning with SGD --> most popular for DNNs

Source: A Survey on Distributed Machine Learning https://dl.acm.org/doi/abs/10.1145/3377454

DL Training: The Phases

- Each training algorithm consists of 3 computation phases:
 - 1. Forward pass (inference):
 - The process of finding output activations using inputs and weights.
 - 2. Weight gradient computation:
 - The process of finding the gradient of weights (with respect to the loss function) using output gradients and inputs.
 - 3. Input gradient computation:
 - The process of finding the gradient of inputs (with respect to the loss function) using output gradients and weights.
- Operations 2 & 3 together are called backpropagation.
- The **training loop** dictates the order in which we issue the basic operations and (possibly) their related communication tasks.

Deep Learning Training Challenge

Training time is increasing

- DNNs are becoming larger
 - Turing NLG: 17.2 B Parameters
 - Megatron LM: 8.3B Parameters
- Training samples are becoming larger
- Moore's Law has ended

Source: https://openai.com/blog/ai-and-compute/

Key Challenge: Large Models → Large Comms

Challenges:

- Multiple NPUs are required to fit large-scale models
- e.g., 16 NPUs for GPT-3 (175B params)
 128 NPUs for Transformer-1T (1T params) (using ZeRO stage 2)

Enter: DL Training Platforms

- ✓ Build customized chips for training
- ✓ Scale the training across more compute nodes

And many more ...

- Cerebras CS2
- Tesla Dojo
- NVIDIA DGX + Mellanox SHARP switches
- Intel Habana
- IBM Blueconnect

•

Components of a DL Training Platform

Modified version of source figure from: "Zion: Facebook Next- Generation Large Memory Training Platform", Misha Smelyanskiy, Hot Chips 31"

Systems challenges with Distributed Training

- Communication!
 - Inevitable in any distributed algorithm

- What does communication depend on?
 - synchronization scheme: synchronous vs. asynchronous.
 - parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...

- Is it a problem?
 - Depends ... can we hide it behind compute?
 - How do we determine this?

Understanding DL Training design-space

Distributed Training Stack

DNN Models

Layer Types: CONV2D, Attention, Fully-Connected, ...

Parameter sizes: Millions to Trillions

Distributed Training Stack

Parallelization Strategies

- The way compute tasks are distributed across different compute nodes. Multiple ways to split the tasks:
 - Split the minibatch (Data-Parallel)
 - Split the model (Model-Parallel)
 - Split the DNN layers: (Pipeline-Parallel)
 - •
- This also defines the communication pattern across different nodes.

Parallelism: Data-Parallel Training

- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- No communication during the forward pass.

Flow-per-layer: 1.Compute output -> 2. go to the next layer

Parallelism: Data-Parallel Training

- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- Communicate weight gradients during the backpropagation pass.
 - Blocking wait during forward pass for collective of previous backpropagation for that layer.

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer

Parallelism: Model-Parallel Training

- Distribute Model across all nodes and replicate data along all nodes.
- Communicate outputs during the forward pass.

Flow-per-layer: 1.Compute output -> 2. issue output gradient comm -> 3.wait for gradient to be finished -> 4. go to the next layer

Parallelism: Model-Parallel Training

- Distribute Model across all nodes and replicate data along all nodes
- Communicate input gradients during the backpropagation pass.

Flow-per-layer: 1.Compute input gradient-> 2.issue input gradient comm -> 3.compute weight gradient -> 4. wait for input gradient -> 5. go to previous layer

Parallelism: Hybrid Parallel

• Partition nodes into groups. Parallelism within a group is modelparallel, across the groups is data-parallel, or vice versa.

Parallelism	Activations during the forward pass	Weight gradients	Input gradients
Data		✓	
Model	✓		✓
Hybrid	partially	partially	partially

Parallelism: Pipelined Parallel

- Distribute DNN layers across all nodes.
- Decompose minibatch into microbatches and propagate them to the pipeline in-order.
- Communicate outputs during the forward pass.

Parallelism: Pipelined Parallel

- Distribute DNN layers across all nodes.
- Decompose minibatch into microbatches and propagate them to the pipeline in-order.
- Communicate input gradients during the backpropagation.

Parallelism: Pipelined Parallel

• How a minibatch is broken into micro-batches and pipeline is filled.

 $F_{m,n}$: forward-pass corresponding to micro-batch #n at device #m.

B $_{\rm m,n}$: back-propagation corresponding to micro-batch #n at device #m.

Need for more sophisticated schemes ...

1000x larger models 1000x more compute In just 2 years

Today, GPT-3 with 175 billion params trained on 1024 GPUs for 4 months.

Tomorrow, multi-Trillion parameter models and beyond.

Source: Cerebras (Hot Chips 2021)

Example 1: Microsoft ZeRO

Motivation

- Data Parallelism (DP): Cannot fit large models
- Model Parallelism (MP): Computations too fine-grained, Large communication overhead, Layer-dependent design
- Large Memory Overhead for Model + Optimizer state
 - 8x overhead over model state!

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Example 1: Microsoft ZeRO

ZeRO: Zero Redundancy Optimizer

Reduce redundant Model State

- Partition Optimizer state
- Partition Gradient state
- Memory vs Communication

l

	gpu ₀		gpu _i		gpu _{N-1}	Memory Consumed	K=12 Ψ=7.5B N _d =64
Baseline		•••		•••		$(2+2+K)*\Psi$	120GB
P _{os}			T	•••		$2\mathbf{\Psi} + 2\mathbf{\Psi} + \frac{K * \mathbf{\Psi}}{N_d}$	31.4GB
P _{os+g}				•••		$2\Psi + \frac{(2+K)*\Psi}{N_d}$	16.6GB
P _{os+g+p}				•••		$\frac{(2+2+K)*\Psi}{N_d}$	1.9GB
	Parameters	5 = 0	Gradients		Optimizer Stat	es	

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Output Activation

Weight Gradient

Example 2: Facebook DLRM

More recent examples

PipeDream (Microsoft)

MegatronLM (NVIDIA)

Distributed Training Stack

Model Parameter Update Mechanisms

		Synchronization		
		Asynchronous	Synchronous	
Communication Handling	Parameter-server	Centralized or Distributed	Centralized or Decentralized	
	Collective-based	N/A	Distributed	

Synchronization: Sync. vs. Async. Training

- Defines when nodes should exchange data
 - Affects convergence time

Communication Handling

Parameter Server

Step 1: Each node sends its model gradients to the parameter server to be reduced with other gradients and update the model

Step 2: The parameter server sends the updated model to the compute nodes to begin the new iteration.

Communication Handling

• Collective-based: Compute Nodes directly talk to each other to globally reduce their gradients and update the model through *All-Reduce* communication pattern.

"Collective Communication" (from MPI)

More details later

Exchanging Output Activations or Input Gradients:

- It may be required depending on the **parallelization strategy** (discussed next)
- Handled either via collective based patterns or direct Node-to-Node sends/recvs (no parameter server is used).

When are collectives needed?

	Model Updates	Input Gradient Exchange	Output Activation Exchange
Param-server	N	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N
Collective-based	Y (All-Reduce)	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N	Data-parallel: N Model-parallel: Usually * Pipeline-Parallel: N

^{*} All-reduce, All-gather, Reduce-scatter, All-to-All

Different Kinds of Collective Algorithms

Reduce-Scatter:

- Used during input-output exchange due to model-parallelism
- Implementation Algorithms: Ring-Based, Direct-based, etc.

All-Gather:

- Used during input-output exchange due to model-parallelism
- Implementation Algorithms: Ring-Based, Direct-based, etc.

All-Reduce (Reduce-Scatter + All-Gather):

- Used during input-output exchange due to model-parallelism, or during model-parameter update.
- Implementation Algorithms: Ring-Based, Direct-based, Tree-based, Halving-doubling, etc..

• All-To-All:

- Used during input-output exchange due to model-parallelism (e.g., distributed embedding layer on DLRM DNN.).
- Implementation Algorithms: Direct-based, Ring-Based, etc..

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3_	0	1	2	3
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{j} X_0^{(j)}$)		
$X_{1}^{(0)}$	$X_{1}^{(1)}$	$X_1^{(2)}$	$X_1^{(3)}$ _	-	$\sum_{j} X_{1}^{(j)}$)	
$X_{2}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_{2}^{(3)}$			$\sum_{j} X_2^{(j)}$	
$X_3^{(0)}$		$X_3^{(2)}$	$X_3^{(3)}$ Re	educe catter			$\sum_{j} X_3^{(j)}$
		Node	Node		Node	Node,	Node
0	1_	2	3_	_ 0_	$_{1}$	2	3
X0				X0	X0	X0	<i>X</i> 0
	<i>X</i> 1			→ X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
	ı	I	l All-ga	other	 	ı	

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3	0	1	2	3_
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{j} X_0^{(j)}$			
$X_{1}^{(0)}$	$X_{1}^{(1)}$	$X_{1}^{(2)}$	$X_1^{(3)}$.	$\sum_{j} X_{1}^{(j)}$			
$Y^{(0)}$	$X_{2}^{(1)}$	$X^{(2)}$	$X_{2}^{(3)}$				$\sum_{j} X_2^{(j)}$
$X_{3}^{(0)}$	$X_{3}^{(1)}$	$X_{3}^{(2)}$	$X_{3}^{(3)}$	$\sum_j X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$
3			' All-1	reduce		٠	'

Noue	noue	Noue	noue	Noue	noue	Noue	Noue
0	1	2	3	0	1	2	3
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$X_0^{(0)}$	$X_1^{(0)}$	$X_2^{(0)}$	$X_3^{(0)}$
1		$X_1^{(2)}$		$X_0^{(1)}$	$X_1^{(1)}$	$X_{2}^{(1)}$	$X_3^{(1)}$
		$X_2^{(2)}$	$X_2^{(3)}$	$X_0^{(2)}$	$X_1^{(2)}$	$X_2^{(2)}$	$X_3^{(2)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_{3}^{(3)}$	$X_0^{(3)}$	$X_1^{(3)}$	$X_2^{(3)}$	$X_3^{(3)}$
			AII-	to-an			

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0	1_	2	3	_0	1	2	3
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} \ X_{\cdot}^{(1)}$	$X_0^{(2)} \ X_{\cdot}^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_{i} X_{1}^{(j)}$		
$X_{2}^{(0)} X_{3}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_2^{(3)}$	educe		$\sum_{j} X_2^{(j)}$	$\sum_{i} X_{3}^{(}$
-	A_3	A_3	1 3 -se	catter	 	 	~
	Node	Node			Node	- 1	
_0	1	2	3	_0_	1	2	3
X0				X0	X0	X0	X0
	<i>X</i> 1		→	→ X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
	ı	ı	All-ga	ather I	ı	I	
Node	Node	Node	Node	Node	,Node	Node	Node
0	1	2	3	0	1	2	3
$Y^{(0)}$	$X_{0}^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{i} X_0^{(j)}$	$\sum_{i} X_0^{(j)}$	$\sum_{i} X_0^{(j)}$	$\sum_{i} X_0^{(j)}$
$V^{(0)}$	$Y^{(1)}$	$X^{(2)}$	$X_1^{(3)}$ -	$\sum_{i=1}^{n} X_{i}^{(j)}$	$\sum_{j} X_{1}^{(j)}$	$\sum_{i} X_{1}^{(j)}$	$\sum_{i}^{j} X_{i}^{(j)}$
$egin{array}{c} oldsymbol{\Lambda}_1 \\ oldsymbol{V}^{(0)} \end{array}$	$Y^{(1)}$	$X_1 X^{(2)}$	$\mathbf{v}_{(3)}$	$\sum_{j} X_{2}^{(j)}$	$\sum_{i} X_{2}^{(j)}$	$\sum_{i}^{j} X_{2}^{(j)}$	$\sum_{i=1}^{n} X_{i}^{(i)}$
$X_2^{(0)}$	$\mathbf{v}^{(1)}$	X_2 $Y^{(2)}$	$V^{(3)}$	$\sum_{j}^{j} X_{2}^{(j)}$	$\sum_{i=1}^{j} X_{i}^{(j)}$	$\sum_{i}^{j} X_{i}^{(j)}$	$\sum_{j=1}^{j} X_{2}^{j}$
$X_3^{(0)}$	Λ_3	$ X_3^{(2)} $	Λ_{2}	educe	\angle_{j}^{-13}	\angle_{j}^{-13}	_ j - 3

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0_	1	2	3_	0	1	2	3
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} \ X_1^{(1)} \ Y^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ Y^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_j X_1^{(j)}$	$\sum X_{s}^{(j)}$	
$X_2^{(0)} X_3^{(0)}$	$X_{2}^{(1)}$ $X_{3}^{(1)}$	$X_{2}^{(2)} X_{3}^{(2)}$	$X_{2}^{(3)}$ Re	educe catter		 ij 2	$\sum_{j} X_3^{(}$
Node	Node	Node			Node,	Node,	Node
0	1	2	3_	_0_	$_{1}$	2	3
X0				X0	X0	X0	<i>X</i> 0
	<i>X</i> 1		_ →	- X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	<i>X</i> 2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
			All-ga	ther	ı	ı	
Node	Node	Node	Node	Node	Node	Node	Node
0_	_1_	2	3	0_	$\downarrow 1$	2	3
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_j X_0^{(j)}$	$\sum\nolimits_{j} X_{0}^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_j X_0^{(j)}$
$X_1^{(0)}$	$X_{1}^{(1)}$	$X_1^{(2)}$	$X_1^{(3)}$ -	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_{1}^{(j)}$
$X_{2}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_2^{(3)}$	$\sum_{j} X_2^{(j)}$	$\sum_{j} X_2^{(j)}$	$\sum_{j} X_{2}^{(j)}$	$\sum_{j} X_2^{(j)}$
$X_3^{(0)}$	$X_3^{(1)}$	X_3^2	$Y^{(3)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{0}$
´-			All-re	eauce			

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3	0_	1	2	3
$X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)}$	$X_0^{(1)} \ X_1^{(1)} \ X^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ Y^{(2)}$	×1 0	$\sum_{j} X_0^{(j)}$	$\sum_j X_1^{(j)}$	$\sum_j X_2^{(j)}$	
$V^{(0)}$	$\mathbf{Y}^{(1)}$	$Y^{(2)}$	$X^{(3)}$ Re	duce			$\sum_{i} X_3^{(i)}$
Node	A3 Node	Node	Node	atter	ı Node,	l Nodo	l [—] ⁄ Node
0	1	2	3	0	1	2	Noue 3
			3	X0	<i>X</i> 0	X0	X0
X0	<i>X</i> 1		_	- X1	X_1	X1	X1
	Λ I	<i>X</i> 2		X2	X2	X2	X2
		112	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3
			All-ga	ther	I	I	
Node.	Node.	Node	Node	Node	.Node	. Node	e Node
0	1	2	3	0	1	2	3
$ \begin{array}{c} X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ Y_2^{(0)} \end{array} $	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_2^{(1)}$	$X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ Y_2^{(2)}$	$ \begin{array}{c} X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \\ Y_2^{(3)} \end{array} $	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{2}^{(j)}$	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{2}^{(j)}$	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)}$
A 3 1			All-re	duce			

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3	_0	1	2	3
$X_0^{(0)} X_1^{(0)}$		$X_0^{(2)} \\ Y^{(2)}$	U	$\sum_{j} X_0^{(j)}$	$\sum X^{(j)}$		
$X_1^{(0)}$	$X_1^{(1)}$ $X_2^{(1)}$	$X_1^{(2)}$ $X_2^{(2)}$	$X_{2}^{(3)}$			$\sum_j X_2^{(j)}$	\(\nabla_{\nu()}\)
$X_{3}^{(0)}$	$X_{3}^{(1)}$	$ X_3^{(2)} $	$X_3^{(3)}$ Re	duce atter			$\sum_{j} A_{3}^{c}$
Node	Node	Node	Node	Node,	Node,	Node,	Node
_0	1	2	3	_0_	1	2	3_
X0				<i>X</i> 0	X0	X0	<i>X</i> 0
	<i>X</i> 1		→	- X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
			All-ga	ther	ı	ı	
Node	Node	Node	Node	Node	Node	Node	Node
0	_1_	2	3_	0_	1	2	3
$X_0^{(0)}$	$X_0^{(1)}$ $Y^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$ $\sum_{\mathbf{V}^{(j)}}$	$\sum_{j} X_0^{(j)}$
$X_1^{(0)} \ X_2^{(0)}$	$X_{1}^{(1)} X_{2}^{(1)}$	$X_1^{(2)}$ $X_2^{(2)}$	$X_1^{(3)} \rightarrow X_2^{(3)}$	$\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_1^{(j)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_{3}^{(3)}$ All-re	$\sum_{j} X_3^{(j)}$ educe	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node
1_	2	3_	_0	1_	2	3
$X_1^{(1)}$	$X_0^{(2)} \ X_1^{(2)}$	$ A_1 $	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_{1}^{(j)}$	\(\nabla_{\psi}(t)\)	
$X_{2}^{(1)} X_{3}^{(1)}$	$X_2^{(2)} \ X_3^{(2)}$	$X_{2}^{(3)}$ R			$\sum_{j} X_{2}^{j}$	$\sum_{j} X_3^{(j)}$
Node	Node	Node	Node	Node,	Node,	Node
1_	2	3_	_ 0	1	2	3_
]		X0	X0	X0	X0
<i>X</i> 1		-	► X1	<i>X</i> 1	<i>X</i> 1	X1
	<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
		<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
ı	I	l All-g	ather	ı	ı	
Node	Node	Node	Node	Node	Node	Node
1	2	3	0	1	2	3
$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_2^{(3)}$	$\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$	$\sum_{j}^{-} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$ $\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$
	$\begin{array}{c} \mathbf{I} \\ X_0^{(1)} \\ X_1^{(1)} \\ X_2^{(1)} \\ X_3^{(1)} \\ \textbf{Node} \\ \mathbf{I} \\ X_1 \\ \end{array}$	$\begin{array}{c cccc} 1 & 2 \\ X_0^{(1)} & X_0^{(2)} \\ X_1^{(1)} & X_1^{(2)} \\ X_2^{(1)} & X_2^{(2)} \\ X_3^{(1)} & X_3^{(2)} \\ & & \mathbf{Node} \\ 1 & 2 \\ & & & & \\ \mathbf{Node} & \mathbf{Node} \\ 1 & & & & \\ 1 & & & & \\ & & & & \\ \mathbf{Node} & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 1 & 2 & 3 & 0 & 1\\ \hline X_0^{(1)} & X_0^{(2)} & X_0^{(3)} & \sum_j X_0^{(j)} \\ X_1^{(1)} & X_1^{(2)} & X_1^{(3)} & & \sum_j X_0^{(j)} \\ X_2^{(1)} & X_2^{(2)} & X_2^{(3)} & & & \sum_j X_1^{(j)} \\ X_2^{(1)} & X_3^{(2)} & X_3^{(3)} & \text{Reduce} \\ \hline X_3^{(3)} & \text{-scatter} \\ \hline Node Node Node Node Node Node Node Node $	$\begin{array}{ c c c c c } \hline 1 & 2 & 3 & 0 & 1 & 2 \\ X_{0}^{(1)} & X_{0}^{(2)} & X_{0}^{(3)} & \sum_{j} X_{0}^{(j)} & \\ X_{1}^{(1)} & X_{1}^{(2)} & X_{1}^{(3)} & & \sum_{j} X_{1}^{(j)} & \\ X_{2}^{(1)} & X_{2}^{(2)} & X_{3}^{(3)} & \text{Reduce} \\ X_{3}^{(1)} & X_{3}^{(2)} & X_{3}^{(3)} & \text{Reduce} \\ X_{3}^{(1)} & X_{3}^{(2)} & X_{3}^{(3)} & \text{Reduce} \\ \mathbf{Node} & \mathbf{Node} & \mathbf{Node} & \mathbf{Node} & \mathbf{Node} & \mathbf{Node} \\ 1 & 2 & 3 & 0 & 1 & 2 \\ & & & & & & & & & & & & & & & & \\ X_{1} & & & & & & & & & & & & & & & \\ X_{2} & & & & & & & & & & & & & & & & \\ X_{3} & & & & & & & & & & & & & & & & & & &$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3_	0	1	2	3
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} \\ X^{(1)}$	$X_0^{(2)} \\ Y^{(2)}$	$X_0^{(3)}$ $X_0^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_i X_1^{(j)}$		
$X_1 \ X_2^{(0)} \ \mathbf{v}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_2^{(3)}$	educe		$\sum_{j} X_2^{(j)}$	$\sum_{i} X_3^{(i)}$
A_3	A_3	A_3		atter		 	<i>^</i>
Node	Node	Node			Node	- 1	
0	$\stackrel{1}{\vdash}$	1 2	3	_0_	$\frac{1}{4}$	2	3
X0				X0	X0	<i>X</i> 0	X0
	<i>X</i> 1		→	- X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3
	'	•	All-ga	ther I	'	'	
Node	Node	Node	Node	Node	Node	Node	Node
0_	1	2	3	0	1	2	3
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} X_1^{(1)}$	$X_0^{(2)} \ X_1^{(2)}$	$X_0^{(3)} \\ X_1^{(3)} \rightarrow$	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$	$\sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} $	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$
$X_{2}^{(0)} X_{3}^{(0)}$	$X_{3}^{(1)}$ $X_{3}^{(1)}$	$X_2^{(2)} X_3^{(2)}$	$X_2^{(3)} = X_2^{(3)}$	$\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ educe	$\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$	$\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$	$\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$
-	-			-			

Node Node Node Node

X0

X1

X2

X3

*X*3

Example: Direct All-Reduce

Node Node Node Node

Example: Direct All-Reduce

Node	Node	Node	Node	Node	Node	Node	Node
0_	1	2	3	0	1	2	3
$X_0^{(0)}$	0	A_0	0	$\sum_{j} X_0^{(j)}$			
$X_1^{(0)}$	 1	α_1	- 1	→	$\sum_{j} X_{1}^{(j)}$) 	
$X_{2}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_{2}^{(3)}$			$\sum_{j} X_{2}^{(j)}$	<u></u>
$X_3^{(0)}$	$X_{3}^{(1)}$	$X_3^{(2)}$	$X_3^{(3)}$ R	teduce scatter			$\sum_{j} X_3^{(j)}$
Node	Node	Node			Node,	Node,	Node
0	1	2	3	_ 0	1	2	3
X0				<i>X</i> 0	X0	X0	<i>X</i> 0
	<i>X</i> 1		-	→ X1	<i>X</i> 1	<i>X</i> 1	<i>X</i> 1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
	ı	ı	All-g	gather	I	ı	
Node	Node	Node	Node	Node	Node	Node	e Node
0	_1_	2	3	0	1	2	3
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$
$X_{1}^{(0)}$	$X_{1}^{(1)}$	$X_1^{(2)}$	$X_1^{(3)}$.	$\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_{1}^{(j)}$	$\sum\nolimits_{j} X_{1}^{(j)}$
$X_{2}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_{2}^{(3)}$	$\sum_{j} X_2^{(j)}$	$\sum_{j} X_2^{(j)}$	$\sum_{j} X_{2}^{(j)}$	$\sum_{j} X_2^{(j)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_{3}^{(3)}$	$\sum_{j} X_3^{(j)}$ reduce	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$
´-	-		AII-I	reduce			-

Example: All-to-All

Node	Node	Node	Node	Node Node Node Node				
_0	_1	2	3_	_0_	_1_	2	3	
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$			$X_2^{(0)}$		
		$X_1^{(2)}$		$X_0^{(1)}$	$X_1^{(1)}$	$X_{2}^{(1)}$	$X_3^{(1)}$	
$X_2^{(0)}$	$X_2^{(1)}$	$X_2^{(2)}$	$X_2^{(3)}$	$X_0^{(2)}$	$X_1^{(2)}$	$X_2^{(2)}$	$X_3^{(2)}$	
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_3^{(3)}$ All-	$X_0^{(3)}$	$X_1^{(3)}$	$X_2^{(3)}$	$X_3^{(3)}$	

Collectives on Sophisticated Training Platforms

Torus 3D
Similar to Google TPU

NPU Intra-package scale-up Inter-package scale-up

Hierarchical all-reduce:

- Reduce-scatter within package
- All-reduce across rows
- All-reduce across columns
- All-gather within package

All-To-All

Similar to NVIDIA DGX2

Hierarchical all-reduce:

- Reduce-scatter within package
- All-reduce across switch
- All-gather within package

Heterogeneous Bandwidth

Multi-phase Collectives

Distributed Training Stack

DL Training: The Compute

GEMM MNK N N **Dimension** Representation **Forward Pass Output Feature** M **Input Feature** Weights Map (Inference and Training) M dim: batch size Map N dim: number of channels in the next layer **Backward Pass Input Feature Output Feature** M (Training) **Weights**^T **Error Error K dim:** [H * W * C] **Gradient Computation** Input **Output Feature Feature** (Training) **ΔWeights Error** Map^T

Key Compute Kernel during DL Training

Matrix multiplications (GEMMs) consume around **70%** of the total runtime when training modern deep learning workloads.

GEMMs in Deep Learning

Hardware for Accelerating GEMMs

SIMT Architectures

SIMD Architectures

Tesla FSDC

Systolic Architectures

Xilinx xDNN

Nvidia Tensor Cores

Google TPU

Key Feature: Specialized support for GEMMs

GEMMs in Modern DL

Workload	Application	Example Dimensions		
		M	N	K
GNMT		128	2048	4096
	Machine	320	3072	4096
	Translation	1632	36548	1024
		2048	4096	32
DeepBench	General	1024	16	500000
	Workload	35	8457	2560
Transformer	Language	31999	1024	84
	Understanding	84	1024	4096
NCF	Collaborative	2048	1	128
	Filtering	256	256	2048

GEMMs are irregular (non-square)!

GNMT Pruning - Temporal Sparsity

(https://www.intel.ai/compressing-gnmt-models)

GEMMs are Sparse! Weight sparsity ranges from **40%** to **90%**. Activation sparsity is approximately **30%** to **70%** from ReLU, dropout, etc.

Mapping GEMMs on Accelerators

What determines utilization?

Mapping Efficiency

What determines stalls?

Memory/Interconnect Bandwidth

TPU (Systolic Array) $15 \cdot \cdot \cdot 31 \cdot \cdot \cdot 47 \cdot \cdot \cdot 63 \cdot \cdot \cdot 79 \cdot \cdot \cdot 95 \cdot \cdot 111 \cdot \cdot 127$

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mechanisms to increase utilization

Handling Irregular GEMMs

• One large array (e.g., Google TPU) versus several smaller arrays (e.g., NVIDIA

Tensor cores)

• Trade-off: reuse vs utilization

Handling Sparse GEMMs

- Structured Sparsity Support
 - E.g., NVIDIA A100
- Unstructured Sparsity Support
 - Active research going on

NVIDIA A100 supports 4:2 structured sparsity

Effect of Enhanced Compute Efficiency on Training

• A Torus 3D with total of 32 nodes (2X4X4) is used.

Distributed Training Stack

Topology-aware Collectives

(a) Ring(k)

(b) FullyConnected(k)

(b) Switch(k)

Topology Building Block	Topology-aware Collective Algorithm		
Ring	Ring		
FullyConnected	Direct		
Switch	HalvingDoubling		

b) All-gather phases

HalvingDoubling All-Reduce

Distributed Training Stack

Baseline All-Reduce on the Hierarchical Topologies

S. Rashidi et al., "Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models". ISCA 2022.

Baseline All-Reduce on the Hierarchical Topologies

Pipeline Stage latency: Idle time Idle time Idle time Idle time

Problem: Uneven pipeline stage latencies that causes network underutilization

For solution to this problem, check out our talk on Themis on Tuesday, June 21, Session 7B, 2:30 – 2:50 PM

S. Rashidi et al.. " Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models". ISCA 2022.

Horizontal Dimension

Distributed Training Stack

Resource Contention at End-point

Endpoint in Baseline

Endpoint with Accelerator Collectives Engine (ACE)

Alternate approach: offload to switch (e.g., ISCA 2020)

(b) Impact of compute-comms overlap on a real-world production-class DLRM workload

S. Rashidi et al., "Enabling Compute-Communication Overlap in Distributed Deep Learning Training Platforms". ISCA 2021

Distributed Training Stack

Target System

Torus 3D

X * Y* Z dimension

X= cores within a package

Y= packages in horizonal dimension

Z= packages in vertical dimension

Impact of 1D/2D/3D Torus

- Adding a dimension decreases the number of steps per collective.
 - For example, going from 1X64X1 to 1X8X8.
- Adding a dimension might increase amount of data each node sends out (depends on the algorithm).
 - For example, going from 1X8X8 to 2X8X4.
- Hence, choosing a topology is a tradeoff between the above effects.

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms", ISPASS 2020

Impact of Asymmetric Hierarchical Topology

- Having higher intra-package BW improves the performance.
- We can further improve performance by changing the algorithm to leverage this asymmetric BW.

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms", ISPASS 2020

Distributed Training Stack

Target Systems

HierOpt

3-phase all-reduce

communication

Effect of Size of Switch Buffer

Observations:

• Flat vs. Hierarch different Sensitivity to global switch size

Distributed Training Stack

Introducing ASTRA-sim

75 STRA* SIM*

- ✓ Released
- In progress
- ✓ Supports Data-Parallel, Model-Parallel, Hybrid-Parallel training loops
- ✓ Extensible to more training loops
 - Graph-based input from PyTorch
- ✓ Ring based, Tree-based, AlltoAll based, and multi-phase collectives
- √ Variety of scheduling policies
- ✓ Compute times fed via offline system measurements or compute simulator
- ✓ Various topologies, flow-control, link bandwidth, congestion control
- ✓ Plug-and-play options
 - ✓ Analytical (roofline)
 - Analytical with congestion
 - ✓ Garnet (credit-based)
 - ➤ NS3 (TCP, RDMA)

DL Training Co-Design Stack

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW
Co-Design Exploration for Distributed DL
Training Platforms", ISPASS 2020

S. Rashidi, et al., "Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 casestudy with TCP/IP transport", Hot Interconnects 2020

What Does ASTRA-sim Report?

ASTRA-sim Reports:

- 1. End-to-end training time.
- 2. Total communication time for each communication operation.
- 3. The amount of **exposed communication** for each communication operation.
- 4. Total Exposed communication and total computation.
- More detailed stats such as average message latency per each hierarchical collective phase.

Network Backend Specific Reports (Depends on the network backend type):

- 1. Network BW utilization
- Communication protocol stats, such as packet drops, # of retransmissions, etc.
- 3. Network switch buffer usage
- 4. ...

Summary and Takeaways

- Large Model distributed training is an ongoing open-research area
- Many emerging supercomputing systems being designed specifically for this problem!
 - Cerebras CS2
 - Tesla Dojo
 - NVIDIA DGX + Mellanox SHARP switches
 - Intel Habana
 - IBM Blueconnect
 - •
- Co-design of algorithm and system offers high opportunities for speedup and efficiency

Agenda

Time (EDT)	Topic	Presenter
8:30 – 9:30	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna
9:30 – 10:30	ASTRA-sim	Saeed Rashidi
10:30 - 11:00	Coffee Break	
11:00 – 11:50	Demo and Exercises	William Won and Taekyung Heo
11:50 – 12:00	Extensions and Future Development	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/isca-2022

Attention: Tutorial is being recorded

Backup

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0	1_	2	3_	0	1	2	3
$X_0^{(0)}$	$X_0^{(1)}$	U		$\sum_{j} X_0^{(j)}$			
$X_1^{(0)}$	$X_1^{(1)}$	$X_1^{(2)}$	$X_1^{(3)} \rightarrow$		$\sum_{j} X_1^{(j)}$		
$X_{2}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$				$\sum_{j} X_2^{(j)}$	\
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_3^{(3)}$ Re	duce atter			$\sum_{j} X_3^{(j)}$
Node	Node	Node	Node	Node,	Node,	Node,	Node
0	1	2	3	_0	1	2	3_
X0)		X0	X0	X0	X0
	<i>X</i> 1		-	- X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3
	ı		All-ga	ther I	'	- 1	
Node	Node	Node	Node	Node	Node	Node	Node
0	_1_	2	3	0	1	2	3
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$
$X_1^{(0)}$	$X_{1}^{(1)}$	$X_1^{(2)}$	$X_1^{(3)} \rightarrow$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_1^{(j)}$
$X^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_{2}^{(3)}$	$\sum_{j} X_2^{(j)}$	$\sum_{j} X_2^{(j)}$	$\sum_{j} X_2^{(j)}$	$\sum_{j} X_2^{(j)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_{2}^{(3)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$
	Node	Node	Ап-ге	^{duce} Node	.Node	. Node	Node
•	_						3
	L 1 .	12.	1 3	0	ΙI] 2	ו נ
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$		$X_1^{(0)}$	\leftarrow	←
$X_0^{(0)}$ $X_1^{(0)}$			$X_0^{(3)}$ $X_1^{(3)}$	$X_0^{(0)}$ $X_0^{(1)}$		$X_{2}^{(0)}$	$X_3^{(0)}$
	$X_1^{(1)}$	$X_1^{(2)}$	$X_1^{(3)} - X_2^{(3)}$	$X_0^{(0)}$ $X_0^{(1)}$	$X_1^{(1)} X_1^{(2)}$	$X_2^{(0)} X_2^{(1)}$	$X_3^{(0)} X_3^{(1)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3	_0	1_	2	3_
$ \begin{array}{c} X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)} \end{array} $	$X_1^{(1)} \\ X_2^{(1)}$	$X_1^{(2)} \\ X_2^{(2)}$	$X_1^{(3)} \rightarrow$	$\sum_{j} X_0^{(j)}$	$\sum_j X_1^{(j)}$	$\sum_j X_2^{(j)}$	$\sum_i X_3^{(j)}$
				utter	 N= 4 - 1	 N= 4 -	— [,]
	Noae	Node		Node	- 1	- 1	
0	1	2	3	0	1	2	3_
X0				X0	X0	<i>X</i> 0	X0
	<i>X</i> 1		-	· X1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
	l		All-ga	_{ther}	ı	ı	
Node	Node	Node	Node	Node	Node	Node	Node
0	_1_	2	3	0	1	2	3
	$X_{1}^{(1)}$	$X_0^{(2)} \ X_1^{(2)}$	$X_0^{(3)} \\ X_1^{(3)} \rightarrow$	$\sum_{j} X_0^{(j)}$ $\sum_{i} X_1^{(j)}$		$\sum_{j} X_0^{(j)}$ $\sum_{i} X_1^{(j)}$	$\sum_{j} X_0^{(j)}$ $\sum_{i} X_1^{(j)}$
$X_{2}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_2^{(3)}$	$\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{2}^{(j)}$		$\sum_{j}^{j} X_{2}^{(j)}$ $\sum_{j} X_{2}^{(j)}$	$\sum_{j}^{J} X_{2}^{(j)}$ $\sum_{j} X_{2}^{(j)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_2^{(2)} X_3^{(2)}$	$X_{3}^{(3)}$ All-re	$\sum_{j} X_3^{(j)}$ duce	$\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j} X_2^{(j)} $ $\sum_{j} X_3^{(j)}$
$X_3^{(0)}$	$X_3^{(1)}$	$X_2^{(2)}$ $X_3^{(2)}$ Node	$X_{3}^{(3)}$ All-re	$\sum_{j} X_3^{(j)}$ duce	$\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$	$\sum_{j}^{J} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node
$X_3^{(0)}$	$X_3^{(1)}$ Node	$X_{2}^{(2)} \ X_{3}^{(2)}$ Node 2	$X_{3}^{(3)}$ Node	$\sum_{j} X_{3}^{(j)}$ duce Node	$\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_{3}^{(j)}$ Node	3
$X_{3}^{(0)}$ Node $X_{0}^{(0)}$	$X_3^{(1)}$ Node $X_0^{(1)}$	$X_{2}^{(2)} \ X_{3}^{(2)}$ Node $X_{3}^{(2)}$	$X_{3}^{(3)}$ All-re Node $X_{3}^{(3)}$	$\sum_{j} X_{3}^{(j)}$ duce Node	$\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_{3}^{(j)}$ Node	3
$X_{3}^{(0)}$ Node $X_{0}^{(0)}$	$X_3^{(1)}$ Node $X_0^{(1)}$	$X_{2}^{(2)} \ X_{3}^{(2)}$ Node $X_{3}^{(2)}$	$X_{3}^{(3)}$ Node	$\sum_{j} X_{3}^{(j)}$ duce Node	$\sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node $\frac{1}{X_{1}^{(0)}}$	$\begin{array}{c c} \sum_{j} X_3^{(j)} \\ \hline \mathbf{Node} \\ \hline 2 \\ X_2^{(0)} \end{array}$	$X_3^{(0)}$
$X_3^{(0)}$ Node	$X_{3}^{(1)}$ Node $X_{0}^{(1)}$ $X_{1}^{(1)}$	$X_{2}^{(2)} \ X_{3}^{(2)}$ Node $X_{0}^{(2)} \ X_{1}^{(2)}$	$X_{3}^{(3)}$ All-re Node 3 $X_{0}^{(3)}$ $X_{1}^{(3)}$ $X_{2}^{(3)}$	$\frac{\sum_{j} X_{3}^{(j)}}{\text{duce}}$ Node $\frac{0}{X_{0}^{(0)}}$	$\sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node $\frac{1}{X_{1}^{(0)}}$ $X_{1}^{(1)}$ $X_{1}^{(2)}$	$\begin{array}{c c} \sum_{j} X_{3}^{(j)} \\ \hline \textbf{Node} \\ \hline \textbf{2} \\ X_{2}^{(0)} \\ X_{2}^{(1)} \end{array}$	$X_3^{(0)}$ $X_3^{(1)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Reduce-Scatter phase done!

Node	Node	Node	Node	Node	Node	Node	Node
0	$\begin{bmatrix} 1 \end{bmatrix}$	2	3	0	$\begin{bmatrix} 1 \end{bmatrix}$	2	3
$X_0^{(0)}$	$X_{0}^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum X_0^{(j)}$			
$X_1^{(0)}$			$X_1^{(3)} \rightarrow$	_ j 0	$\sum X_1^{(j)}$		
$X_{2}^{(0)}$	$X_1^{(1)}$			•		$\sum_{i} X_{2}^{(j)}$	
	$X_2^{(1)}$			luce		_ j ²	$\sum X_2^{(j)}$
$X_3^{(0)}$			$X_3^{(3)}$ Rec	ittei	l	l	Δ_{i}^{-3}
	Node	Node	Node	Node	Node	- 1	
0	1	2	3 .	0	1	2	3_
X0				X0	X0	X0	X0
	<i>X</i> 1		→	<i>X</i> 1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
	I	ı	l _{All-gat}	her l	I	I	
Node	Node	Node	Node	Node	Node	Node	Node
0	_1_	2	3	0	1	2	3
	$X_0^{(1)}$	$\overline{}$			$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$X_0^{(j)}$
$X_0^{(0)}$		$X_0^{(2)}$	$X_0^{(3)}$	$\frac{0}{\sum_{j} X_{0}^{(j)}}$		$\sum_{j} X_0^{(j)}$	$egin{array}{c} {\bf 3} \ \sum_j X_0^{(j)} \ \sum_i X_1^{(j)} \end{array}$
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)}$	$X_0^{(2)} X_1^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow$	0		$\sum_{j} X_0^{(j)}$	$ \begin{array}{c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \end{array} $
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} X_1^{(1)}$	$X_0^{(2)} X_1^{(2)} X_2^{(2)}$	$X_0^{(3)} \\ X_1^{(3)} \to X_2^{(3)}$	$\frac{0}{\sum_{j} X_{0}^{(j)}}$		$\sum_{j} X_0^{(j)}$	$ \begin{array}{c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \end{array} $
$X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_3^{(3)}$ All-rec	$\begin{array}{c} 0 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$	$\sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)}$	$ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $	$ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $
$X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)}$	$X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_3^{(3)}$ All-rec	$\begin{array}{c} 0 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$	$\sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)}$	$ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $	$\begin{array}{c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$ $\begin{array}{c} \mathbf{Node} \end{array}$
$X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-reconde	$\begin{array}{c} 0 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$	$\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$ $\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$ Phode 3
$X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-reconde	$\begin{array}{c} {\bf 0} \\ \sum_{j} X_0^{(j)} \\ \sum_{j} X_1^{(j)} \\ \sum_{j} X_2^{(j)} \\ \sum_{j} X_3^{(j)} \\ {\bf Node} \end{array}$	$\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$ $\sum_{j} X_2^{(j)}$ $\sum_{j} X_3^{(j)}$ Phode 3
$X_0^{(0)} \ X_1^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)}$ Node 0	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$ Node	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node \mathbf{z}	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-recondense $X_0^{(3)}$	$\begin{array}{c} {\color{red} {\bf 0}} \\ {\color{red} {\sum_j} X_0^{(j)}} \\ {\color{red} {\sum_j} X_1^{(j)}} \\ {\color{red} {\sum_j} X_2^{(j)}} \\ {\color{red} {\sum_j} X_3^{(j)}} \\ {\color{red} {\bf duce}} \\ {\color{red} {\bf Node}} \\ {\color{red} {\bf 0}} \\ {\color{red} {X_0^{(0)}}} \end{array}$	$\sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)} \sum_{j} X_{3}^{(j)}$ Node 1 $X_{1}^{(0)}$	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node 2 $X_{2}^{(0)}$	$\begin{array}{c} \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$ $\begin{array}{c} \text{Node} \\ 3 \\ X_{3}^{(0)} \end{array}$
$X_0^{(0)} \ X_1^{(0)} \ X_1^{(0)} \ X_3^{(0)} \ X_3^{(0)} \ Node \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$ Node 1 $X_0^{(1)} \ X_1^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)} \ $ Node 2 $X_0^{(2)} \ X_1^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-rec Node $X_0^{(3)}$ $X_0^{(3)}$	$\begin{array}{c} 0 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \text{duce} \\ \mathbf{Node} \\ 0 \\ X_{0}^{(0)} \\ \end{array}$	$\sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node $\frac{1}{X_{1}^{(0)}}$	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node $\frac{2}{2}$ $X_{2}^{(0)}$ $X_{2}^{(0)}$	$\sum_{J} X_0^{(J)} \sum_{J} X_2^{(J)} \sum_{J} X_2^{(J)} \sum_{J} X_3^{(J)}$ P. Node $\frac{3}{X_3^{(0)}}$ $X_3^{(1)}$ $X_2^{(2)}$
$X_0^{(0)} \ X_1^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)}$ Node 0	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$ Node 1 $X_0^{(1)} \ X_1^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node \mathbf{z} $X_0^{(2)} \ X_1^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-rec Node $X_0^{(3)}$ $X_0^{(3)}$	$\begin{array}{c} {\color{red} {\bf 0}} \\ {\color{red} {\sum_j} X_0^{(j)}} \\ {\color{red} {\sum_j} X_1^{(j)}} \\ {\color{red} {\sum_j} X_2^{(j)}} \\ {\color{red} {\sum_j} X_3^{(j)}} \\ {\color{red} {\bf duce}} \\ {\color{red} {\bf Node}} \\ {\color{red} {\bf 0}} \\ {\color{red} {X_0^{(0)}}} \end{array}$	$\sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node $\frac{1}{X_{1}^{(0)}}$ $X_{1}^{(1)}$ $X_{1}^{(2)}$	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{3}^{(j)} \sum_{j} X_{3}^{(j)}$ Node 2 $X_{2}^{(0)}$	$\sum_{J} X_0^{(J)} \sum_{J} X_2^{(J)} \sum_{J} X_2^{(J)} \sum_{J} X_3^{(J)}$ P. Node $\frac{3}{X_3^{(0)}}$ $X_3^{(1)}$ $X_2^{(2)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3	_0_	1	2	3
$X_0^{(0)}$	$X_{0}^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{i} X_0^{(j)}$]		
$X_1^{(0)}$	$X^{(1)}$	$X_1^{(2)}$	-	— ,	$\sum_{i} X_{1}^{(j)}$		İ
$X_{2}^{(0)}$	$\mathbf{Y}^{(1)}$	$X_{2}^{(2)}$				$\sum_{i} X_2^{(j)}$	
$X_{3}^{(0)}$			$X_3^{(3)}$ Rec	luce			$\sum_{i} X_3^{(j)}$
5			-80	ittei	l Nodel	l Nodo	l—, Node
	Noae	Noae	Node	Node	Node	- 1	
0	1	2	3	_0 ∤	 {	2	3_
X0				X0	X0	X0	X0
	<i>X</i> 1		-	<i>X</i> 1	<i>X</i> 1	<i>X</i> 1	X1
		<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	X2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	X3
			All-gat	her	ı	ı	
Node	Node	Node	Node	Node	Node	Node	Node
_			_			١ ۾	_
0	$\lfloor 1 \rfloor$	2	3	0		<u> </u>	<u> </u>
	<u> </u>	-			$\sum_{i} X_0^{(j)}$	$\sum_{i} X_0^{(j)}$	$\sum_{i} X_0^{(j)}$
$X_0^{(0)}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\sum_{j} X_0^{(j)}$		$\frac{2}{\sum_{j} X_0^{(j)}}$ $\sum_{j} X_1^{(j)}$	$\sum_{i} X_0^{(j)}$
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)}$	$X_0^{(2)} X_1^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow$	$\sum_{j} X_0^{(j)}$ $\sum_{j} X_1^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_1^{(j)}$	$\frac{\sum_{j} X_0^{(j)}}{\sum_{j} X_1^{(j)}}$
$X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)}$	$X_0^{(1)} X_1^{(1)}$	$X_0^{(2)}$	$X_0^{(3)} \\ X_1^{(3)} \to X_2^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_1^{(j)}$	$\sum_{j} X_{0}^{(j)} \ \sum_{j} X_{1}^{(j)} \ \sum_{j} X_{2}^{(j)} \ \sum_{j} X_{2}^{(j)}$	$\frac{\sum_{j} X_0^{(j)}}{\sum_{j} X_1^{(j)}}$
$X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ X_3^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_3^{(3)}$ All-rec	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ duce	$\sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)}$	$\frac{\sum_{j} X_{1}^{(j)}}{\sum_{j} X_{2}^{(j)}}$ $\frac{\sum_{j} X_{3}^{(j)}}{\sum_{j} X_{3}^{(j)}}$	$ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $
$X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ Y_2^{(2)}$	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_3^{(3)}$ All-rec	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ duce	$\sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)}$	$\frac{\sum_{j} X_{1}^{(j)}}{\sum_{j} X_{2}^{(j)}}$ $\frac{\sum_{j} X_{3}^{(j)}}{\sum_{j} X_{3}^{(j)}}$	$\frac{\sum_{j} X_0^{(j)}}{\sum_{j} X_1^{(j)}}$
$X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ All-reconde	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ duce	$\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_{1}^{(j)} $ $\sum_{j} X_{2}^{(j)} $ $\sum_{j} X_{3}^{(j)} $ $\sum_{j} Node$	$ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $ Node
$X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)}$	$X_0^{(1)} X_1^{(1)} X_2^{(1)} X_3^{(1)}$	$X_0^{(2)} \ X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node \mathbf{z}	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_3^{(3)}$ Node $X_0^{(3)}$	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ duce	$\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ Node	$\sum_{j} X_{1}^{(j)} $ $\sum_{j} X_{2}^{(j)} $ $\sum_{j} X_{3}^{(j)} $ $\sum_{j} Node$	$ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} $ Node
$X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)}$ Node	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$ Node	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node \mathbf{Z}	$X_0^{(3)}$ $X_1^{(3)} \rightarrow X_2^{(3)}$ $X_3^{(3)}$ Node $X_0^{(3)}$	$\sum_{j} X_{0}^{(j)}$ $\sum_{j} X_{1}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{3}^{(j)}$ duce Node	$\sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)}$ Node 1 $X_{1}^{(0)}$	$\sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)} \sum_{j} X_{3}^{(j)}$ Node 2 $X_{2}^{(0)}$	$\sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \text{Node} \\ 3 \\ X_{3}^{(0)}$
$X_0^{(0)} \ X_1^{(0)} \ X_1^{(0)} \ X_3^{(0)}$ Node $X_0^{(0)} \ X_0^{(0)}$	$X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)}$ Node	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node \mathbf{z} $X_0^{(2)} \ X_1^{(2)}$	$X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$ Node $X_0^{(3)}$ $X_0^{(3)}$	$\frac{\sum_{j} X_{0}^{(j)}}{\sum_{j} X_{1}^{(j)}} \cdot \sum_{j} X_{2}^{(j)}$ $\sum_{j} X_{2}^{(j)}$ duce $\frac{0}{X_{0}^{(0)}}$	$\sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)} $ Node $\frac{1}{X_{1}^{(0)}}$ $X_{1}^{(1)}$	$\sum_{j} X_{1}^{(j)} \sum_{j} X_{2}^{(j)} \sum_{j} X_{3}^{(j)} \sum_{j} X_{3}^{(j)}$ Node 2 $X_{2}^{(0)}$	$\sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \text{Node} \\ 3 \\ X_{3}^{(0)} \\ X_{3}^{(1)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

All-Reduce done

Node	Node	Node	Node	Node	Node	Node	Node
0	1	2	3	_0	1_	2	3
	$X_{2}^{(1)}$	$X_1^{(2)} \ X_2^{(2)}$	$X_1^{(3)} \rightarrow X_2^{(3)}$	$\sum_{j} X_0^{(j)}$	$\sum_j X_1^{(j)}$	$\sum_{j} X_2^{(j)}$	\
$X_{3}^{(0)}$	$X_3^{(1)}$	$X_3^{(2)}$	$X_3^{(3)}$ Rec	duce			$\sum_{j} X_{3}^{(j)}$
	-		Node	Node,	Node,	Node,	Node
0	1	2	3_	_0_	1	2	3
X0]]	X0	X0	X0	X0
	<i>X</i> 1		→	- X1	<i>X</i> 1	<i>X</i> 1	<i>X</i> 1
	11.1	<i>X</i> 2		<i>X</i> 2	<i>X</i> 2	<i>X</i> 2	<i>X</i> 2
			<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3	<i>X</i> 3
	l	l	All-gat	ther	I	ı	
Mode	Modo	Node	Nodo	Mode	Mode	Mode	Node
Noue,	Noue,	Noug	Noue	Noue	moue	, Nout	, Nouc
0	Noue 1	2	3	0	1	2	3
0	_1_	2	3	0_	1	2	3_
$\frac{0}{X_0^{(0)}}$	$X_0^{(1)}$	$X_0^{(2)}$	$X_0^{(3)}$	$\frac{0}{\sum_{j} X_{0}^{(j)}}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$\frac{3}{\sum_{j} X_0^{(j)}}$
$X_0^{(0)} X_1^{(0)}$	$X_0^{(1)} X_i^{(1)}$	$X_0^{(2)}$ $X_1^{(2)}$	$\begin{array}{c} 3 \\ X_0^{(3)} \\ X_1^{(3)} \rightarrow \end{array}$	$\frac{0}{\sum_{j} X_{0}^{(j)}}$ $\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_0^{(j)} \sum_{j} X_1^{(j)}$	$egin{array}{c} 2 \ \sum_{j} X_0^{(j)} \ \sum_{j} X_1^{(j)} \end{array}$	$\begin{array}{c} 3 \\ \sum_{j} X_0^{(j)} \\ \sum_{i} X_1^{(j)} \end{array}$
$ \begin{array}{c} $	$\begin{array}{c} 1 \\ X_0^{(1)} \\ X_1^{(1)} \\ X_2^{(1)} \end{array}$	$X_0^{(2)}$ $X_1^{(2)}$ $X_2^{(2)}$	$ \begin{array}{c} 3 \\ X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \end{array} $	$ \frac{0}{\sum_{j} X_{0}^{(j)}} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} $	$\sum_{j} X_{0}^{(j)} \sum_{j} X_{1}^{(j)} \sum_{j} X_{1}^{(j)}$	$egin{array}{c} {f 2} \ \sum_j X_0^{(j)} \ \sum_j X_1^{(j)} \ \sum_j X_2^{(j)} \ \end{array}$	$ \begin{array}{c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \end{array} $
$\begin{array}{c c} 0 \\ X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)} \end{array}$	$\begin{array}{c} 1 \\ X_0^{(1)} \\ X_1^{(1)} \\ X_2^{(1)} \\ X_3^{(1)} \end{array}$	$\begin{array}{c} \mathbf{Z} \\ X_0^{(2)} \\ X_1^{(2)} \\ X_2^{(2)} \\ X_3^{(2)} \end{array}$	$\begin{array}{c} 3 \\ X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \\ X_3^{(3)} \end{array} \rightarrow \begin{array}{c} 3 \\ X_2^{(3)} \\ X_3^{(3)} \end{array}$	$ \frac{0}{\sum_{j} X_{0}^{(j)}} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ $ duce	$\begin{array}{c} 1 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$	$egin{array}{c} {f 2} \ \sum_j X_0^{(j)} \ \sum_j X_1^{(j)} \ \sum_j X_2^{(j)} \ \sum_j X_3^{(j)} \ \end{array}$	$\begin{array}{c c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$
$\begin{array}{c c} 0 \\ X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)} \end{array}$	$\begin{array}{c} 1 \\ X_0^{(1)} \\ X_1^{(1)} \\ X_2^{(1)} \\ X_3^{(1)} \end{array}$	$X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)}$ Node	$\begin{array}{c} 3 \\ X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \\ X_3^{(3)} \\ \text{Node} \end{array}$	$\begin{array}{c} {\bf 0} \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ {\bf duce} \\ {\bf Node} \end{array}$	$\begin{array}{c} 1 \\ \sum_{j} X_0^{(j)} \\ \sum_{j} X_1^{(j)} \\ \sum_{j} X_2^{(j)} \\ \sum_{j} X_3^{(j)} \end{array}$ $\begin{array}{c} \mathbf{Node} \end{array}$	$egin{array}{c} {f 2} \ \sum_j X_0^{(j)} \ \sum_j X_1^{(j)} \ \sum_j X_2^{(j)} \ \sum_j X_3^{(j)} \ \end{array}$	$egin{array}{c} {\bf 3} \\ {\sum_j X_0^{(j)}} \\ {\sum_j X_1^{(j)}} \\ {\sum_j X_2^{(j)}} \\ {\sum_j X_3^{(j)}} \\ {f Node} \\ {f $
$egin{array}{c} oldsymbol{0} \ X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)} \ \end{pmatrix}$ Node	$egin{array}{c} {f 1} \ X_0^{(1)} \ X_1^{(1)} \ X_2^{(1)} \ X_3^{(1)} \ \end{array}$ Node	$egin{array}{c} {f Z}_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)} \ \end{array}$ Node	$\begin{matrix} 3 \\ X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \\ X_3^{(3)} \\ \mathbf{All-re} \\ \mathbf{Node} \\ 3 \end{matrix}$	$\begin{array}{c} {\bf 0} \\ \sum_j X_0^{(j)} \\ \sum_j X_1^{(j)} \\ \sum_j X_2^{(j)} \\ \sum_j X_3^{(j)} \\ {\bf duce} \\ {\bf Node} \\ {\bf 0} \end{array}$	$\begin{array}{c} 1 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \end{array}$ $\begin{array}{c} 1 \\ \mathbf{Node} \\ 1 \end{array}$	$egin{array}{c} {f 2} \ \sum_j X_0^{(j)} \ \sum_j X_1^{(j)} \ \sum_j X_2^{(j)} \ \sum_j X_3^{(j)} \ \sum_j X_3^{(j)} \ \end{array}$	$egin{array}{c} {\bf 3} \\ {\sum_j X_0^{(j)}} \\ {\sum_j X_1^{(j)}} \\ {\sum_j X_2^{(j)}} \\ {\sum_j X_3^{(j)}} \\ {f Node} \\ {f 3} \\ \end{array}$
$\begin{array}{c} {\bf 0} \\ X_0^{(0)} \\ X_1^{(0)} \\ X_2^{(0)} \\ X_3^{(0)} \\ {\bf Node} \\ {\bf 0} \\ X_0^{(0)} \end{array}$	$\begin{matrix} 1 \\ X_0^{(1)} \\ X_1^{(1)} \\ X_2^{(1)} \\ X_3^{(1)} \end{matrix}$ Node $\begin{matrix} 1 \\ X_0^{(1)} \end{matrix}$	$egin{array}{c} {f Z} & {f Z}_0^{(2)} & X_1^{(2)} & X_1^{(2)} & X_2^{(2)} & X_3^{(2)} & {f Node} & {f Z} & X_0^{(2)} & {f Z}_0^{(2)} & $	$\begin{array}{c} {\bf 3} \\ X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \\ X_3^{(3)} \\ {\bf Node} \\ {\bf 3} \\ X_0^{(3)} \end{array}$	$\begin{array}{c} 0 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \mathbf{duce} \\ \mathbf{Node} \\ 0 \\ X_{0}^{(0)} \end{array}$	$\begin{array}{c} 1 \\ \sum_{j} X_0^{(j)} \\ \sum_{j} X_3^{(j)} \\ \sum_{j} X_3^{(j)} \\ \mathbf{Node} \\ 1 \\ X_1^{(0)} \end{array}$	$\begin{array}{c c} 2 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \end{array}$ $\begin{array}{c c} \mathbf{Node} \\ 2 \\ X_{2}^{(0)} \end{array}$	$\begin{array}{c c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \end{array}$ $\begin{array}{c c} \mathbf{Node} \\ 3 \\ X_{3}^{(0)} \end{array}$
$\begin{array}{c} {\color{red}0} \\ {\color{blue}X_0^{(0)}} \\ {\color{blue}X_1^{(0)}} \\ {\color{blue}X_1^{(0)}} \\ {\color{blue}X_3^{(0)}} \\ {\color{blue}\mathbf{Node}} \\ {\color{blue}0} \\ {\color{blue}X_1^{(0)}} \end{array}$	$X_0^{(1)} \ X_0^{(1)} \ X_2^{(1)} \ X_3^{(1)}$ Node $X_0^{(1)} \ X_0^{(1)}$	$egin{array}{c} {f 2} \ X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)} \ \end{array}$ Node $f 2$ $egin{array}{c} X_0^{(2)} \ X_1^{(2)} \ \end{array}$	$\begin{array}{c} {\bf 3} \\ X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(2)} \\ X_3^{(3)} \\ {\bf Node} \\ {\bf 3} \\ X_0^{(3)} \\ X_1^{(3)} \\ \end{array}$	$\begin{array}{c} {\bf 0} \\ \sum_{j} X_0^{(j)} \\ \sum_{j} X_1^{(j)} \\ \sum_{j} X_2^{(j)} \\ \sum_{j} X_3^{(j)} \\ {\bf duce} \\ {\bf Node} \\ {\bf 0} \end{array}$	$\begin{array}{c} 1 \\ \sum_{j} X_{0}^{(0)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ 1 \\ X_{1}^{(0)} \\ X_{1}^{(1)} \end{array}$	$\begin{array}{ c c } \textbf{2} \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \textbf{Node} \\ \textbf{2} \\ X_{2}^{(0)} \\ X_{2}^{(1)} \end{array}$	$\begin{array}{c c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \end{array}$ $\begin{array}{c c} \mathbf{Node} \\ 3 \\ X_{3}^{(0)} \\ \end{array}$
$egin{array}{c} oldsymbol{0} \ X_0^{(0)} \ X_1^{(0)} \ X_2^{(0)} \ X_3^{(0)} \ \end{pmatrix}$ Node	$X_0^{(1)} \ X_0^{(1)} \ X_2^{(1)} \ X_3^{(1)}$ Node $X_0^{(1)} \ X_0^{(1)}$	$egin{array}{c} {f 2} \ X_0^{(2)} \ X_1^{(2)} \ X_2^{(2)} \ X_3^{(2)} \ \end{array}$ Node $f 2$ $egin{array}{c} X_0^{(2)} \ X_1^{(2)} \ \end{array}$	$\begin{array}{c} {\bf 3} \\ X_0^{(3)} \\ X_1^{(3)} \\ X_2^{(3)} \\ X_3^{(3)} \\ {\bf Node} \\ {\bf 3} \\ X_0^{(3)} \end{array}$	$\begin{array}{c} 0 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \mathbf{duce} \\ \mathbf{Node} \\ 0 \\ X_{0}^{(0)} \end{array}$	$\begin{array}{c} 1 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ 1 \\ X_{1}^{(0)} \\ X_{1}^{(1)} \end{array}$	$\begin{array}{c c} 2 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{2}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ 2 \\ \mathbf{X}_{2}^{(0)} \\ X_{2}^{(1)} \\ X_{2}^{(2)} \end{array}$	$\begin{array}{c c} 3 \\ \sum_{j} X_{0}^{(j)} \\ \sum_{j} X_{1}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \sum_{j} X_{3}^{(j)} \\ \end{array}$ $\begin{array}{c c} \mathbf{Node} \\ 3 \\ X_{3}^{(0)} \end{array}$

Baseline system

Step 1

Baseline system

Step 2

Baseline system

Step 3

Baseline system

Step 4

Baseline system

Step 5

Baseline system

Step 5

Baseline system

Step 5

ACE

Step 1

ACE

Step 1

ACE

Step 2

ACE

Step 2

ACE

Step 2

ACE

Step 3

ACE

Step 3

ACE

Step 4

ACE

Step 5

ACE

Step 5

ACE

Step 5

ACE

Step 5

Speed-Up Results

S. Rashidi et al., "Enabling Compute-Communication Overlap in Distributed Deep Learning Training Platforms". ISCA 2021

End-to-end training iteration speed-ups

Workload	Speedup (avg.)	Speedup (max)
Resnet-50	1.41X	1.51X
GNMT	1.12X	1.17X
DLRM	1.13X	1.19X

Takeaways:

- Comp-comm overlap is required for high-perf training.
- · Comp-comm overlap is challenging in the baseline system.
- ACE reduces comp-comm resource contention by handling the communication, enabling efficient comp-comm overlap.
- Please check out our paper and full talk for more details!