

ASTRA-sim Tutorial @Hotl 2024 Aug 23, 2024

ASTRA-sim and Chakra Tutorial: *Overview of Chakra and ASTRA-sim*

Tushar Krishna Associate Professor School of ECE, Georgia Institute of Technology tushar@ece.gatech.edu

ASTRA-sim Tutorial - Agenda

Time (PDT)	Торіс	Presenter
3:00 – 3:30 pm	Introduction to Distributed ML	Tushar Krishna
3:30 – 3:45 pm	Overview of Chakra and ASTRA-sim	Tushar Krishna
3:45 – 4:35 pm	Deeper Dive into Chakra and ASTRA-sim	Will Won
	Workload, System, and Network Layers	
4:35 – 4:45 pm	Demo	Will Won
4:45 – 5:00 pm	Closing Remarks	Tushar Krishna

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/hoti-2024

Attention: Tutorial is being recorded

Challenge: Complex SW/HW Co-Design Space

Challenge: Complex SW/HW Co-Design Space

Introducing Chakra and ASTRA-sim

Introducing Chakra and ASTRA-sim

Chakra: Motivation

Motivation

- High-cost of running full workload benchmarks
- Requires cross-domain full-stack expertise
- Difficult to isolate specific HW/SW bottlenecks
- Difficult to isolate compute, memory, network behavior
- Cannot keep up with the pace of Al innovation
- Hard to obfuscate proprietary AI model details
- Hard to reproduce without support infrastructure

Chakra Execution Traces

- Hierarchical DAG
- Nodes
 - Primitive operators: compute, comms, memory
 - Tensor objects: shape, size, device (local/remote)
 - Timing and resource constraints

• Edges

- Data dependency
- Control dependency (e.g. call stack)
- Higher-level abstractions (e.g., components)
 - Comprises of other components or primitive ops

Chakra Ecosystem and End-to-End Flow

Chakra is now part of MLCommons!

Menu =

07.31.2023 - San Francisco, CA

Chakra: Advancing Benchmarking and Codesign for Future Al Systems

Announcing Chakra, execution traces and benchmarks working group

- Build consensus on Execution Trace methodology
 - Enable easier sharing between hyperscaler/cloud and vendors (with/without NDA)
 - Vendors can focus on different components (compute/memory/network)
 - Enable faster ramp-up for startups and academia
- Shared engineering effort towards open/vibrant ecosystem
 - Trace collection and synthesis
 - Support tools and downstream enablement

Benchmark suite definition and supervision

- Single workload and datacenter-scale benchmark scoring
- Future workload projection

Introducing Chakra and ASTRA-sim

ASTRA-sim: Design Principles

A **framework** to model/simulate/emulate AI systems with varying degrees of fidelity.

Key enabler: APIs for plugging in diverse external tools (i.e.,

composable simulators)

Reference Implementation: <u>http://github.com/astra-sim/astra-sim</u>

Website: https://astra-sim.github.io/

ASTRA-sim

13

ASTRA-sim: Workload Layer

ASTRA-sim: System Layer

ASTRA-sim: Network Layer

ASTRA-sim: Compute Layer

ASTRA-sim: Memory Layer

Conclusion

Chakra Execution Trace: an open graph-based representation of AI/ML workload execution

- enables isolation and optimization of compute, memory, communication behavior
- an ecosystem for benchmarking, performance analysis, and performance projection

Workload

Parallelization Strategy

DNN Model

ASTRA-sim: Distributed AI system simulator

- effectively models various aspects of distributed training
- allows mix-and-match of performance models for compute, memory and network (API-based)