

ASTRA-sim Tutorial @Hotl 2024 Aug 23, 2024

ASTRA-sim and Chakra Tutorial: Introduction to Distributed ML

Tushar Krishna Associate Professor School of ECE, Georgia Institute of Technology tushar@ece.gatech.edu

Welcome

Presenters

Tushar Krishna Associate Professor, School of ECE Georgia Institute of Technology <u>tushar@ece.gatech.edu</u>

Will Won Ph.D. Student, School of CS Georgia Institute of Technology william.won@gatech.edu

Contributors

Georgia Tech Jinsun Yoo Joongun Park Changhai Man Divya Kiran Kadiyala

Meta Saeed Rashidi

AMD Brad Beckmann Furkan Eris Kishore Punniyamurthy **NVIDIA** Srinivas Sridharan Taekyung Heo

Intel Sudarshan Srinivasan

+ many more industry/academia collaborators
+ growing!

ASTRA-sim Tutorial - Agenda

Time (PDT)	Торіс	Presenter
3:00 – 3:30 pm	Introduction to Distributed ML	Tushar Krishna
3:30 – 3:45 pm	Overview of Chakra and ASTRA-sim	Tushar Krishna
3:45 – 4:35 pm	Deeper Dive into Chakra and ASTRA-sim	Will Won
	Workload, System, and Network Layers	
4:35 – 4:45 pm	Demo	Will Won
4:45 – 5:00 pm	Closing Remarks	Tushar Krishna

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/hoti-2024

Attention: Tutorial is being recorded

The engine driving the AI Revolution

Core of ML Execution

Trend 1: Large ML Models

• Machine Learning (ML) models are scaling at an unprecedented rate

https://epochai.org/trends

Trend 2: Moore's Law

Cannot simply rely on device scaling

https://epochai.org/trends

Trend 3: Training Dataset

• Huge training dataset

How large was your training dataset?

View other drafts 🛛 🗸

1

My training dataset was <u>1.56 trillion words</u> of text and code. This dataset was collected from a variety of sources, including books, articles, code, and human conversations. The dataset was carefully curated to ensure that it was high-quality and representative of the real world.

Effective stock (number of tokens)

Trend 4: Serving Models

• Various use cases of ML inferences

https://markovate.com/blog/applications-and-use-cases-of-llm/

System Implications

Compute

- Zeta-scale floating-point operations
- 355 GPU-years to train GPT-3
- Memory
 - 10s of TB required
 - Multiple Neural Processing Units (NPUs) are required to simply *fit* LLM weights

Communication

• TBs of communication traffic

Distributed ML

- Model and/or data should be distributed
 - Across different NPUs (Neural Processing Unit)

Communication in Distributed ML

• NPUs should communicate to synchronize data

Components of AI Platforms

HPC for Distributed ML

• Al Supercomputers

Intel Aurora Supercomputer

Google Cloud TPUv4

AMD Instinct Platforms

NVIDIA HGX-H100 SuperPod

Systems challenges with Distributed Training

- Communication!
 - Inevitable in any distributed algorithm
- What does communication depend on?
 - synchronization scheme: synchronous vs. asynchronous.
 - parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...
- Is it a problem?
 - Depends ... can we hide it behind compute?
 - How do we determine this?

Understanding DL Training design-space

Distributed Training Stack

Operator Types: CONV2D, Attention, Fully-Connected, ...

Parameter sizes: Millions to Trillions

Distributed Training Stack

Parallelization Strategies

- In distributed training, we **distribute model and/or training data**
- Parallelization strategy defines how to shard/distribute them
 - Finding an optimal parallelization strategy is active area of research
- Multiple ways to distribute model/data

Tensor Parallelism

- Shard and distribute **DNN model** over NPUs
 - In order to **fit large model** on each NPU

Data Parallelism

- Disperse training data over NPUs
 - In order to increase training throughput

Data Parallel Training (Forward Pass)

- Distribute training data across multiple nodes
- Replicate DNN model along all nodes.

Aug 23, 2024

Data Parallel Training (Backward Pass)

- Compute (partial) Weight Gradients
- Synchronize (partial) weight gradients
 - To compute (full) weight gradient
- Compute Input Gradients
 - For layer (*i* 1) backward pass

Weight Gradient Synchronization

• Sum partial weight gradients to compute full weight gradients

Communication Handling

Parameter Server

Communication Handling

• **Collective-based:** Compute Nodes directly talk to each other to globally reduce their gradients and update the model through a collective communication pattern (e.g., All Reduce).

"Collective Communication" (from MPI)

Collective Communications

• Distributed ML Communication Pattern \rightarrow MPI Collectives

Communication in Data Parallel Training

• No communication during the forward pass.

Communication in Data Parallel Training

- Communicate weight gradients during the backpropagation pass.
 - Via All Reduce "Collective"

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer

More recent examples

2

Steady State

Pipelined model parallelism

PipeDream (Microsoft)

MegatronLM (NVIDIA)

Fully sharded data parallel training

FSDP (Meta)

Distributed Training Stack

Key Compute Kernel during DL Training

Hardware for Accelerating GEMMs

SIMD Architectures

Systolic Architectures

Xilinx xDNN

Nvidia Tensor Cores

Google TPU

- Specialized support for GEMMs
- Maximize HW TFLOPS

Effect of Enhanced Compute Efficiency on Training

Co-Design Exploration for Distributed DL Training Platforms", ISPASS 2020

NPUs (2X4X4)

35

Distributed Training Stack

Topology-aware Collective Algorithms

- Collective algorithm: implementation of collectives
 - Collective communication libraries (CCLs, e.g., NCCL, RCCL, oneCCL) uses collective algorithms to run collective communications
- Example All-Reduce Algorithms:
 - Ring
 - Direct
 - Halving-Doubling
 - Rabenseifner
 - Double Binary Tree
 - etc.
- Given a network topology, an **efficient mechanism** to run collective communication exists
 - Called topology-aware collective algorithms

Example: Ring Based All-Reduce

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

Node Node Node Node

 $X_{0}^{(2)}$

 $X_{0}^{(0)}$

3

 $X_{0}^{(3)}$

 $V^{(3)}$

 $\sum_{i} X_0^{(j)}$

Example: Ring Based All-Reduce

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

Node Node Node Node

 $X_{0}^{(2)}$

 $X_{0}^{(0)}$

3

 $X_{0}^{(3)}$

 $V^{(3)}$

 $\sum_{i} X_0^{(j)}$

Node Node Node Node

Node Node Node Node

 $X_{0}^{(0)}$

 $X_{0}^{(2)}$

3

 $X_{0}^{(3)}$

 $V^{(3)}$

 $\sum_{i} X_0^{(j)}$

Example: Ring Based All-Reduce

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Example: Ring Based All-Reduce

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

Node Node Node Node

 $X_{0}^{(0)}$

 $X_{0}^{(2)}$

3

 $X_{0}^{(3)}$

 $V^{(3)}$

 $\sum_{i} X_0^{(j)}$

 $X_{3}^{(j)}$

Node Node Node Node

Node Node Node Node

 $X_{0}^{(0)}$

 $X_0^{(2)}$

3

 $X_{0}^{(3)}$

 $V^{(3)}$

 $\sum_{i} X_0^{(j)}$

Example: Ring Based All-Reduce

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Example: Ring Based All-Reduce

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

Node Node Node Node

 $X_{0}^{(0)}$

 $X_0^{(2)}$

3

 $X_{0}^{(3)}$

 $V^{(3)}$

 $\sum_{i} X_0^{(j)}$

 $\sum_{i} X_3^{(j)}$

Node Node Node Node

Node Node Node Node

 $X_{0}^{(2)}$

 $X_{0}^{(0)}$

3

 $X_{0}^{(3)}$

 $X_{1}^{(3)}$

 $\sum_{i} X_0^{(j)}$

Example: Ring Based All-Reduce

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Example: Direct All-Reduce

Example: Direct All-Reduce

Example: Direct All-Reduce

Topology-aware Collectives

48

Topology-aware Collective Algorithms

- Optimal collective algorithm heavily depends on network topology
 - Simple collective algorithms will not directly map

Multi-dimensional Collective Algorithm

• Phased approach of Reduce-Scatter and All-Gather

(1) Dim 1: Reduce-Scatter
(2) Dim 2: Reduce-Scatter
(3) Dim 3: Reduce-Scatter
(4) Dim 3: All-Gather
(5) Dim 2: All-Gather
(6) Dim 1: All-Gather

Distributed Training Stack

Networking Technologies

54

NVIDIA DGX SuperPod

• Multi-level switches

57

Tesla Dojo ExaPOD

• Scale-out Mesh Network

• 3D Torus + Optical Networks

State-of-the-art Training Clusters

Tenstorrent
Wormhole

tenstorrent

16X 100GbE

NEX 100Gh.C

16X 100Gb4

ASTRA-sim Tutorial @ Hotl 2024

Distributed Training Stack

Effect of Size of Switch Buffer

Observations:

• Flat vs. Hierarch different Sensitivity to global switch size

Summary and Takeaways

- Large Model distributed ML is an ongoing open-research area
- Many emerging supercomputing systems being designed specifically for this problem!
 - NVIDIA HGX + (Mellanox) SHARP switches
 - Cerebras CS2
 - Tesla Dojo
 - Intel Habana
 - IBM Blueconnect
 - ...
- Co-design of algorithm and system offers high opportunities for speedup and efficiency