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ASTRA-sim Tutorial - Agenda

Time (PDT) Topic Presenter

3:00 – 3:30 pm Introduction to Distributed ML Tushar Krishna

3:30 – 3:45 pm Overview of Chakra and ASTRA-sim Tushar Krishna

3:45 – 4:35 pm Deeper Dive into Chakra and ASTRA-sim Will Won

Workload, System, and Network Layers

4:35 – 4:45 pm Demo Will Won

4:45 – 5:00 pm Closing Remarks Tushar Krishna

Tutorial Website
includes agenda, slides, ASTRA-sim installation instructions (via source + docker image)

https://astra-sim.github.io/tutorials/hoti-2024

Attention: Tutorial is being recorded  
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The engine driving the AI Revolution

Speech Recognition Recommender Systems
Language 
UnderstandingObject Detection

Training

4

Inference
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Core of ML Execution
5

ModelData Result Inference

Training

Calculate Loss

Update Model
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Trend 1: Large ML Models

• Machine Learning (ML) models are scaling at an unprecedented rate

https://epochai.org/trends
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Trend 2: Moore's Law

• Cannot simply rely on device scaling

https://epochai.org/trends
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Trend 3: Training Dataset

• Huge training dataset

https://epochai.org/trends
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Trend 4: Serving Models

• Various use cases of ML inferences

https://markovate.com/blog/applications-and-use-cases-of-llm/
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System Implications
• Compute

• Zeta-scale floating-point operations

• 355 GPU-years to train GPT-3

• Memory
• 10s of TB required

• Multiple Neural Processing Units (NPUs) are required to simply fit LLM weights

• Communication
• TBs of communication traffic
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Distributed ML

• Model and/or data should be distributed
• Across different NPUs (Neural Processing Unit)

ModelData Result

NPU NPU

Tensor Parallelism:

NPU

NPU

Data Parallelism:
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Communication in Distributed ML

• NPUs should communicate to synchronize data

ModelData

NPU NPU

(Partial)
Result

(Partial)
Result

send

send

(Full)
Result

Tensor Parallelism
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Components of AI Platforms

Node

Datacenter 
Fabric

Figure modified from “Zion: Facebook Next- Generation Large Memory Training Platform”, Misha Smelyanskiy, Hot Chips 31”

DNN AcceleratorDRAM/HBM

NPUs

Customized Networking
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HPC for Distributed ML

• AI Supercomputers

AMD Instinct Platforms

Intel Aurora 
Supercomputer

Google Cloud TPUv4

NVIDIA HGX-H100
SuperPod
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Systems challenges with Distributed Training 

• Communication!
• Inevitable in any distributed algorithm

• What does communication depend on?
• synchronization scheme: synchronous vs. asynchronous.

• parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...

• Is it a problem?
• Depends … can we hide it behind compute?

• How do we determine this? 

15
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Understanding DL Training design-space

March 26th, 2023

Abstraction

Co-Design

Figure Courtesy: Srinivas Sridharan (NVIDIA)
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)

17
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DNN Models

ResNet Transformer DLRM

Operator Types: CONV2D, Attention, Fully-Connected, …
Parameter sizes: Millions to Trillions

18
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)

19
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Parallelization Strategies
20

• In distributed training, we distribute model and/or training data

• Parallelization strategy defines how to shard/distribute them
• Finding an optimal parallelization strategy is active area of research

• Multiple ways to distribute model/data
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Tensor Parallelism
21

• Shard and distribute DNN model over NPUs
• In order to fit large model on each NPU

ModelData Output

NPU1 NPU2
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Data Parallelism
22

• Disperse training data over NPUs
• In order to increase training throughput

ModelData Output

NPU1

NPU2
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Data Parallel Training (Forward Pass)

• Distribute training data across multiple nodes

• Replicate DNN model along all nodes.

K

M K

N

M

N

NPU1

NPU2

23

K

M/2

M/2

K

N

K

N

M/2

N

M/2

N
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Data Parallel Training (Backward Pass)

• Compute (partial) Weight Gradients

• Synchronize (partial) weight gradients
• To compute (full) weight gradient

• Compute Input Gradients
• For layer (i - 1) backward pass

NPU1

NPU2

24

K

M/2

M/2

K

N

K

N
(partial) weight gradients

M/2

N

M/2

N

(layer i+1) Input Gradients

K (full) weight gradients

N
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Weight Gradient Synchronization
25

• Sum partial weight gradients to compute full weight gradients

w1 w2 w3 w4

5.2 7.2 3.8 1.5

Weight Gradient (NPU 1)

w1 w2 w3 w4

-1.4 3.6 -2.4 1.9

Weight Gradient (NPU 2)

w1 w2 w3 w4

3.7 -1.2 5.4 -2.7

Weight Gradient (NPU 3)

w1 w2 w3 w4

7.6 9.6 6.8 0.7

Full Weight Gradient

Σ

(partial) weight gradients
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Communication Handling

• Parameter Server

Node 1 Node 2 Node 3

Step 1: Each node sends its
model gradients to the
parameter server to be
reduced with other gradients
and update the model

Parameter 
Server

Node 1 Node 2 Node 3

Step 2: The parameter server
sends the updated model to
the compute nodes to begin
the new iteration.

Parameter 
Server

26
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Communication Handling

• Collective-based: Compute Nodes 
directly talk to each other to globally 
reduce their gradients and update the 
model through a collective 
communication pattern (e.g., All Reduce).

Node 1

Node 2 Node 3

“Collective Communication”
(from MPI)

27
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Collective Communications

• Distributed ML Communication Pattern →MPI Collectives
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Communication in Data Parallel Training

• No communication during the forward pass.

Inference Communicate

Layer 1 Layer 2 …….. Layer N

Forward pass

Flow-per-layer: 1.Compute output -> 2. go to the next layer

NPU1

NPU2

29
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Layer 1 Layer 2 …….. Layer N

Backpropagation

Layer N-1

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer 

Communication in Data Parallel Training

• Communicate weight gradients during the backpropagation pass.
• Via All Reduce “Collective”

Input gradient 
compute

All Reduce 
Collective

Weight gradient 
compute

Blocking 
Communicate

Inference
compute

NPU1

NPU2

30
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More recent examples

PipeDream (Microsoft)

MegatronLM (NVIDIA)

31

FSDP (Meta)
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)

32
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Key Compute Kernel during DL Training

77 % 64 %

Transformer 
(Language Understanding) 

GNMT 
(Machine Translation) 

Matrix multiplications (GEMMs) consume around 70% of the total runtime when 

training modern deep learning workloads.

Runtime breakdown on V100 GPU

33
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Hardware for Accelerating GEMMs
SIMD Architectures Systolic Architectures

Key Feature:
- Specialized support for GEMMs
- Maximize HW TFLOPS

Microsoft Brainwave ARM Trillium

Tesla FSDC Google TPU

Xilinx xDNN Nvidia Tensor Cores

34
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Effect of Enhanced Compute Efficiency on Training

Compute Capability

ResNet-50

S. Rashidi et al.,“ASTRA-SIM: Enabling SW/HW 

Co-Design Exploration for Distributed DL 

Training Platforms”, ISPASS 2020

35

3D torus with total of 32 
NPUs (2X4X4) 
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)

36
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Topology-aware Collective Algorithms
37

• Collective algorithm: implementation of collectives
• Collective communication libraries (CCLs, e.g., NCCL, RCCL, oneCCL) uses

collective algorithms to run collective communications

• Example All-Reduce Algorithms:
• Ring
• Direct
• Halving-Doubling
• Rabenseifner
• Double Binary Tree
• etc.

• Given a network topology, an efficient mechanism to run collective 
communication exists
• Called topology-aware collective algorithms



Aug 23, 2024ASTRA-sim Tutorial @ HotI 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology

Example: Ring Based All-Reduce

• A ring with N nodes partitions data to N messages

• Collective Communication Flow:

Node1

Node2Node4

Node3

1234

1

2

3

4

1 2 3 4

1

2

3

4

38
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Example: Ring Based All-Reduce

• A ring with N nodes partitions data to N messages

• Collective Communication Flow:

Node1

Node2Node4

Node3

4

1

2

3

39

23

3

4

1 4

1

2
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Example: Ring Based All-Reduce

• A ring with N nodes partitions data to N messages

• Collective Communication Flow:

Node1

Node2Node4

Node3

40

2

3

4

1

3

4

1

2
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Example: Ring Based All-Reduce

• A ring with N nodes partitions data to N messages

• Collective Communication Flow:

Node1

Node2Node4

Node3

2

3

4

11

2

3

4

41

Reduce-Scatter done!
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Example: Ring Based All-Reduce

• A ring with N nodes partitions data to N messages

• Collective Communication Flow:

Node1

Node2Node4

Node3

2

3

4

11

2

3

4

42
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Example: Ring Based All-Reduce

• A ring with N nodes partitions data to N messages

• Collective Communication Flow:

Node1

Node2Node4

Node3

12

2

3

3 4

1

4 4 

3

2

1
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Example: Ring Based All-Reduce

• A ring with N nodes partitions data to N messages

• Collective Communication Flow:

Node1

Node2Node4

Node3

124

1

2

3

2 3 4

1

3

4 1

2

3

4

All-Gather done!

44
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Example: Direct All-Reduce

Node1

Node2Node4

Node3

124

1

2

3

2 3 4

1

3

4

4

3

2

1

45
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Example: Direct All-Reduce

Node1

Node2Node4

Node3

1

2

3

4

111

222

333

444

46

Reduce-Scatter done!
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Example: Direct All-Reduce

Node1

Node2Node4

Node3

1

2

3

4

111

222

333

444

All-Gather done!
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Topology-aware Collectives

Topology 
Building Block

Topology-aware Collective 
Algorithm

Ring Ring

FullyConnected Direct

Switch HalvingDoubling

a) Reduce-Scatter phases b) All-gather phases

48
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Topology-aware Collective Algorithms

• Optimal collective algorithm heavily depends on network topology
• Simple collective algorithms will not directly map

Physical Topology: 2D Torus

Ring Algorithm
Network Underutilization!!
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Multi-dimensional Collective Algorithm

• Phased approach of Reduce-Scatter and All-Gather

M. Cho et al., "BlueConnect: Decomposing all-reduce for deep learning on heterogeneous network hierarchy," 
IBM Journal of Research and Development
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (Facebook)

51
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Networking Technologies

NPU NPUNPU NPUNPU NPUNPU NPUNPU NPUNPU NPUNPU NPUNPU NPU

Network

Chiplets / 
Advanced Packaging 

/ Wafercale

Rack-scale Interconnects 
(e.g., Nvlink/XeLink/..)

Infiniband/
Ethernet

52
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Hierarchical Network Architectures

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

25-150 GB/s

Pod

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

Rack-Scale Interconnect

Pod

NIC 25-100 GB/s
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Hierarchical Network Architectures

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

25-150 GB/s

Pod

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

Rack-Scale Interconnect

Pod

NIC 25-100 GB/s
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Hierarchical Network Architectures

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

25-150 GB/s

Pod

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

Rack-Scale Interconnect

Pod

NIC 25-100 GB/s

55



Aug 23, 2024ASTRA-sim Tutorial @ HotI 2024 Tushar Krishna | School of ECE| Georgia Institute of Technology

Hierarchical Network Architectures

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

25-150 GB/s

Pod

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

150-350 GB/s

Node

NPU NPU

50-400 GB/s

Package

NPU NPU

Interposer

Package

Rack-Scale Interconnect 

Node

Rack-Scale Interconnect

Pod

NIC 25-100 GB/s
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NVIDIA DGX SuperPod
57

• Multi-level switches
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Tesla Dojo ExaPOD
58

• Scale-out Mesh Network
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Google Cloud TPU v4
59

• 3D Torus + Optical Networks
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State-of-the-art Training Clusters
60

Meta ZionEX

Intel Habana HLS-1

Cerebras SwarmX

Tenstorrent
Wormhole
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Distributed Training Stack

Figure Courtesy: Srinivas Sridharan (NVIDIA)

61
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Effect of Size of Switch Buffer
Observations:
• Flat vs. Hierarch different Sensitivity to global switch size

DLRM

S. Rashidi, et al.,  “Scalable Distributed Training of 

Recommendation Models: An ASTRA-SIM + NS3 case-

study with TCP/IP transport”, Hot Interconnects 2020
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Summary and Takeaways

• Large Model distributed ML is an ongoing open-research area

• Many emerging supercomputing systems being designed specifically 
for this problem!
• NVIDIA HGX + (Mellanox) SHARP switches

• Cerebras CS2

• Tesla Dojo

• Intel Habana

• IBM Blueconnect

• …

• Co-design of algorithm and system offers high opportunities for 
speedup and efficiency

63
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