

Demo 2: Comparing Systems

William Won

Ph.D. Student, School of Computer Science Georgia Institute of Technology william.won@gatech.edu

Acknowledgments: Srinivas Sridharan (Meta), Sudarshan Srinivasan (Intel)

Objective

- Representing real systems using ASTRA-sim
 - NVIDIA DGX-2 Pods
 - Google Cloud TPU
- Running real DL workload benchmarks
 - Vision model (VGG-16)
 - Language model (GPT-3)
- Comparing ASTRA-sim results

NVIDIA DGX-2 Architecture

- 16 V100 GPUs
- Connected Using NVSwitch / NVLink
- 100 GbE InfiniBand Scale-out per 2 GPUs (i.e., effectively 50 GbE per GPU)

- NVSwitch:
 - 25 GB/s per NVLink
 - 6 NVLinks per GPU
- InfiniBand Switch:
 - 6.25 GB/s

https://docs.it4i.cz/dgx2/introduction/

Representing DGX-2

• 16 DGX-2 connected (total 256 GPUs)

```
inputs/network/dgx2.json
                              2D network
 "dimensions-count": 2,
 "topologies-per-dim": ["Switch", "Switch"], - Switch_Switch Topology
 ______ [6, 1] links per GPU, dim
 "links-count": [6, 1],
                                   link latency
 "link-latency": [500, 500],
                              ——— link bandwidth
 "link-bandwidth": [25, 6.25]
```

Representing DGX-2

• 16 DGX-2 connected (total 256 GPUs)

```
inputs/system/dgx2.txt
scheduling-policy: LIFO
endpoint-delay: 10
active-chunks-per-dimension: 1
preferred-dataset-splits: 4
boost-mode: 1
all-reduce-implementation: halvingDoubling_halvingDoubling — Hierarchical All-Reduce Algorithm
all-gather-implementation: halvingDoubling halvingDoubling
reduce-scatter-implementation: halvingDoubling halvingDoubling
all-to-all-implementation: direct direct
collective-optimization: localBWAware
```

Google Cloud TPU Architecture

- 16×16 TPUv2 (Total 256 TPUs)
- 2D Torus Topology
- Inter-core Interconnect (ICI)
 - 496 Gbps (= 62 GB/s)

N. Jouppi *et al.*, "A Domain-Specific Supercomputer for Training Deep Neural Networks," Communications of the ACM, 63, 7, 67-78.

Representing Cloud TPU

• 16×16 TPUv2 (Total 256 TPUs)

```
inputs/network/tpu.json
                                      2D network
 "dimensions-count": 2,
 "topologies-per-dim": ["Ring", "Ring"], Ring_Ring Topology (2D Torus)
                                 16x16 TPUs (total 256 TPUs)
 "units-count": [16, 16],
                                    _____ [2, 2] links per TPU, dim
 "links-count": [2, 2],
                                            link latency
 "link-latency": [500, 500],
                                       62GB/s link bandwidth
 "link-bandwidth": [62, 62]
```

Representing Cloud TPU

• 16×16 TPUv2 (Total 256 TPUs)

```
inputs/system/tpu.txt
scheduling-policy: LIFO
endpoint-delay: 10
active-chunks-per-dimension: 1
preferred-dataset-splits: 4
boost-mode: 1
                                      Hierarchical All-Reduce Algorithm
all-reduce-implementation: ring ring
all-gather-implementation: ring ring
reduce-scatter-implementation: ring ring
all-to-all-implementation: direct direct
collective-optimization: localBWAware
```

Metadata		Forward		Input grad			Weight grad			Layer	
Layer Name	(rsvd.)	Compute Time	Comm. Type	Comm. size	Compute Time	Comm. Type	Comm. Size	Compute Time	Comm. Type	Comm. Size	Delay
allreduce	-1	1	NONE	0	1	NONE	0	1	ALLREDUCE	1048576	1

- Compute Time
- Communication Type
- Communication Size

- VGG-16 first layer: (50,176 × 27) × (27 × 64)
 - Total 173,408,256 operations
 - TPUv2: 46 TFLOPS (46 × 2⁴⁰ op/s)
 - 3429 ns
- Can leverage Workload Generator or other performance estimations
- Communication: Filter

• $1,792 \times 2B = 3,584 (=3.5 KB)$

https://medium.com/mlearning-ai/an-overview-of-vgg16-and-nin-models-96e4bf398484

inputs/workload/vgg16.txt

Metadata		Forward			Input grad			Weight grad			Layer
Layer Name	(rsvd.)	Compute Time	Comm. Type	Comm. size	Compute Time	Comm. Type	Comm. Size	Compute Time	Comm. Type	Comm. Size	Delay
block1_conv1	-1	3429	NONE	0	3429	NONE	0	3429	ALLREDUCE	3584	1
Estimated Compute Time							Da	ta-Paral			
										3.5 KB	

	V100	TPUv2
Peak Tensor Performance (TFLOPS)	112	46

- V100 is 2.43x faster than TPUv2
- *i.e.*, V100 compute time is **0.41x** of TPUv2

Running Experiment

- Objective:
 - Run VGG-16
 - On DGX-2 Pod and Cloud TPU
- V100 compute time is **0.41x** of TPUv2

Running Experiment

- Objective:
 - Run VGG-16
 - On DGX-2 Pod and Cloud TPU

```
$ cd exercise_2/
$ ./exercise_2-1.sh
$ python3 plot_2-1.py
```

Understanding Results

result 2-1/tutorial result.csv

Name	Name Total Time (us)		Exposed Communication Time (us)	Total Message Size (MB)	
DGX2-VGG16	5632.316	751.019	4881.297	525.729748	
TPU-VGG16	5489.225	1831.809	3657.416	525.730019	

Running Experiment

- Objective:
 - Run **GPT-3** (First 3 Transformer layers)
 - On DGX-2 Pod and Cloud TPU

```
$ ./exercise_2-2.sh
$ python3 plot 2-2.py
```

Understanding Results

result 2-2/tutorial result.csv

Name	Name Total Time (us)		Exposed Communication Time (us)	Total Message Size (MB)	
DGX2-GPT3	787767.34	575821.446	211945.894	32943.252	
TPU-GPT3	1655238.43	1404442.610	250795.814	32943.252	

