

http://synergy.ece.gatech.edu

STRA*

ASPLOS Tutorial

March 26th, 2023

Enabling HW/SW Co-Design of Distributed Deep Learning Training Platforms

ASTRA-sim Tutorial

Tushar Krishna

Associate Professor, School of ECE Georgia Institute of Technology tushar@ece.gatech.edu

Welcome

Tushar Krishna Associate Professor, School of ECE Georgia Institute of Technology <u>tushar@ece.gatech.edu</u>

Saeed Rashidi PhD Student, School of ECE Georgia Institute of Technology saeed.rashidi@ece.gatech.edu

Will Won Ph.D. Student, School of CS Georgia Institute of Technology william.won@gatech.edu

Taekyung HeoPostdoctoral Fellow, School of ECEGeorgia Institute of Technology

taekyung@gatech.edu

Srinivas Sridharan Research Scientist Meta

<u>ssrinivas@fb.com</u>

Research Scientist, Intel

Tarannum Khan

Graduate Student, CS UT Austin

Aditya Akella

Professor, CS UT Austin

+ growing!

ASTRA-sim Tutorial @ ASPLOS 2023

Time (PDT)	Торіс	Presenter
1:40 - 2:20	Introduction to Distributed DL Training	Tushar Krishna
2:20 - 2:40	Training Systems Challenges: An Industry Perspective from Meta	Srinivas Sridharan
2:40 - 3:20	ASTRA-sim	Saeed Rashidi and Taekyung Heo
3:20 - 3:40	Coffee Break	
3:40 - 4:20	ASTRA-sim (continued)	Saeed Rashidi and William Won
4:20 - 4:50	Demo	William Won
4:50 - 5:00	Closing Remarks and Questions	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/asplos-2023</u>

Attention: Tutorial is being recorded

ASTRA-sim Installation

- Please go ahead and install ASTRA-sim!
- Instructions here:

Time (PDT)	Торіс	Presenter
1:40 - 2:20	Introduction to Distributed DL Training	Tushar Krishna
2:20 - 2:40	Training Systems Challenges: An Industry Perspective from Meta	Srinivas Sridharan
2:40 - 3:20	ASTRA-sim	Saeed Rashidi and Taekyung Heo
3:20 - 3:40	Coffee Break	
3:40 - 4:20	ASTRA-sim (continued)	Saeed Rashidi and William Won
4:20 - 4:50	Demo	William Won
4:50 - 5:00	Closing Remarks and Questions	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/asplos-2023</u>

Attention: Tutorial is being recorded

The engine driving the AI Revolution

Training

Training a deep neural network (DNN) involves feeding it a training dataset to update its weights to model the underlying function representing the dataset

Object Detection

Speech Recognition

HELLO WO

Recommender Systems

Real Ry

"Training" in the context of ML

- Machine Learning algorithms learn to make decisions or predictions based on data.
- We can categorize current ML algorithms based on the following three characteristics
 - Purpose / Task
 - Anomaly Detection
 - Classification
 - Clustering
 - Dimensionality Reduction
 - Representation Learning
 - Regression
 - Feedback from data
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning
 - Reinforcement learning
 - Method (for hyperparameter optimization)
 - SGD
 - EA
 - Rule-based
 - Topic Models
 - ..

We focus on Supervised Learning with SGD --> most popular for DNNs

Source: A Survey on Distributed Machine Learning

https://dl.acm.org/doi/abs/10.1145/3377454

DL Training: The Phases

- Each training algorithm consists of 3 computation phases:
 - 1. Forward pass (inference):
 - The process of finding output activations using inputs and weights.
 - 2. Weight gradient computation:
 - The process of finding the gradient of weights (with respect to the loss function) using output gradients and inputs.
 - 3. Input gradient computation:
 - The process of finding the gradient of inputs (with respect to the loss function) using output gradients and weights.
- Operations 2 & 3 together are called backpropagation.
- The **training loop** dictates the order in which we issue the basic operations and (possibly) their related communication tasks.

Deep Learning Training Challenge

• Training time is increasing

- DNNs are becoming larger
 - Turing NLG: 17.2 B Parameters
 - Megatron LM: 8.3B Parameters
- Training samples are becoming larger
- Moore's Law has ended

Source: https://openai.com/blog/ai-and-compute/

Key Challenge: Large Models \rightarrow Large Comms

Challenges:

- Multiple NPUs are required to fit large-scale models
- e.g., 16 NPUs for GPT-3 (175B params) 128 NPUs for Transformer-1T (1T params) (using ZeRO stage 2)

10

Enter: DL Training Platforms

And many more ...

- Cerebras CS2
- Tesla Dojo
- NVIDIA DGX + Mellanox SHARP switches
- Intel Habana
- IBM Blueconnect
- ...

Tesla Dojo

Components of a DL Training Platform Neural Processing Scale-out Fabric Unit (NPU) **CPU Fabric Accelerator** "Scale-up" Fabric NIC **Training accelerator** CPU Node

Modified version of source figure from : "Zion: Facebook Next- Generation Large Memory Training Platform", Misha Smelyanskiy, Hot Chips 31"

Systems challenges with Distributed Training

- Communication!
 - Inevitable in any distributed algorithm
- What does communication depend on?
 - synchronization scheme: synchronous vs. asynchronous.
 - parallelism approach: data-parallel, model-parallel, hybrid-parallel., ZeRO ...
- Is it a problem?
 - Depends ... can we hide it behind compute?
 - How do we determine this?

Understanding DL Training design-space

Distributed Training Stack

Operator Types: CONV2D, Attention, Fully-Connected, ...

Parameter sizes: Millions to Trillions

Distributed Training Stack

Parallelization Strategies

- The way compute tasks are distributed across different compute nodes. Multiple ways to split the tasks:
 - Split the minibatch (Data-Parallel)
 - Split the model (Model-Parallel)
 - Split the DNN layers: (Pipeline-Parallel)
 - •
- This also defines the communication pattern across different nodes.

Parallelism: Data-Parallel Training

 Distribute Data across multiple nodes and replicate model (network) along all nodes.

Parallelism: Data-Parallel Training

- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- No communication during the forward pass.

Parallelism: Data-Parallel Training

- Distribute Data across multiple nodes and replicate model (network) along all nodes.
- Communicate weight gradients during the backpropagation pass.
 - Blocking wait at end of backpropogation for collective before forward pass

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer

Parallelism: Model-Parallel Training

• Distribute Model across all nodes and replicate data along all nodes.

Parallelism: Model-Parallel Training

- Distribute Model across all nodes and replicate data along all nodes.
- **Communicate outputs** during the forward pass.

Flow-per-layer: 1.Compute output -> 2. issue output gradient comm -> 3.wait for gradient to be finished -> 4. go to the next layer

Parallelism: Model-Parallel Training

- Distribute Model across all nodes and replicate data along all nodes
- Communicate input gradients during the backpropagation pass.

Flow-per-layer: 1.Compute input gradient-> 2.issue input gradient comm -> 3.compute weight gradient -> 4. wait for input gradient -> 5. go to previous layer

Parallelism: Hybrid Parallel

• Partition nodes into groups. Parallelism within a group is modelparallel, across the groups is data-parallel, or vice versa.

Parallelism	Activations during the forward pass	Weight gradients	Input gradients		
Data		\checkmark			
Model	\checkmark		\checkmark		
Hybrid	partially	partially	partially		

• Distribute DNN layers across all nodes.

- Distribute DNN layers across all nodes.
- Communicate outputs during the forward pass.

- Distribute DNN layers across all nodes.
- Communicate input gradients during the backpropagation.

- Decompose minibatch into microbatches and propagate them to the pipeline in-order to enhance utilization
 - Challenge bubbles

			F _{3,0}	F 3,1	F _{3,2}	F 3,3	B 3,3	B 3,2	B 3,1	B 3,0				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B _{2,3}	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F 1,0	F 1,1	F 1,2	F 1,3					B 1,3	B 1,2	B 1,1	B 1,0		Update
F 0,0	F _{0,1}	F _{0,2}	F 0,3			В	ubble	;		B 0,3	B 0,2	B 0,1	B 0,0	Update

- F $_{m,n}$: forward-pass corresponding to micro-batch #n at device #m.
- B _{m,n}: back-propagation corresponding to micro-batch #n at device #m.

Need for more sophisticated schemes ...

Example 1: Microsoft ZeRO

Motivation

- Data Parallelism (DP): Cannot fit large models
- Model Parallelism (MP): Computations too fine-grained, Large communication overhead, Layer-dependent design
- Large Memory Overhead for Model + Optimizer state
 - 8x overhead over model state!
 #Parameters: ψ

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Example 1: Microsoft ZeRO

ZeRO: Zero Redundancy Optimizer

- Partition Optimizer state
- Partition Gradient state
- Memory vs Communication

Reduce redundant Model State

Momentum

(fp32)

4ψ

Optimizer State (12ψ)

Weight

(fp32)

4ψ

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Weight

(fp16)

2ψ

Gradient

(fp16)

2ψ

Gradient (2ψ) Variance

(fp32)

4ψ

More recent examples

MegatronLM (NVIDIA)

Distributed Training Stack

Model Parameter Update Mechanisms

		Synchronization		
		Asynchronous	Synchronous	
Communication	Parameter-server	Centralized or Distributed	Centralized or Decentralized	
Handling	Collective-based	N/A	Distributed	

Synchronization: Sync. vs. Async. Training

- Defines when nodes should exchange data
 - Affects convergence time

Communication Handling

Parameter Server

Communication Handling

• **Collective-based:** Compute Nodes directly talk to each other to globally reduce their gradients and update the model through *All-Reduce* communication pattern.

More details later

Exchanging Output Activations or Input Gradients:

- It may be required depending on the **parallelization strategy** (discussed next)
- Handled either via collective based patterns or direct Node-to-Node sends/recvs (no parameter server is used).

When are collectives needed?

	Model (i.e. weight) Updates	Input Gradient Exchange	Output Activation Exchange
Param-server	Ν	Data-parallel: N Model-parallel: Usually [*] Pipeline-Parallel: N	Data-parallel: N Model-parallel: Usually [*] Pipeline-Parallel: N
Collective-based	Y (All-Reduce)	Data-parallel: N Model-parallel: Usually [*] Pipeline-Parallel: N	Data-parallel: N Model-parallel: Usually [*] Pipeline-Parallel: N

* All-reduce, All-gather, Reduce-scatter, All-to-All

Distributed Training Stack

Key Compute Kernel during DL Training

ASTRA-sim Tutorial @ ASPLOS 2023

GEMMs in Deep Learning

Hardware for Accelerating GEMMs

SIMD Architectures

Systolic Architectures

Xilinx xDNN

Nvidia Tensor Cores

Google TPU

- Specialized support for GEMMs
- Maximize HW TFLOPS

Workload Trends: Irregular & Sparse

Workload	Application	Example Dimensions			
	••	Μ	Ν	К	
		128	2048	4096	
CNMT	Machine	320	3072	4096	
GIVIVII	Translation	1632	36548	1024	
		2048	4096	32	
DeenBench	General	1024	16	500000	
реервенси	Workload	35	8457	2560	
Tronoformore	Language	31999	1024	84	
Transformer	Understanding	84	1024	4096	
	Collaborative	2048	1	128	
NCF	Filtering	256	256	2048	

GEMMs are irregular (non-square)!

GEMMs are Sparse! Weight sparsity ranges from **40%** to **90%**. Activation sparsity is approximately **30%** to **70%** from ReLU, dropout, etc.

Challenges – Mapping Utilization

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

47

Challenges – Mapping Utilization

Enhancing Utilization

Handling Irregular GEMMs

• One large array (e.g., Google TPU) versus several smaller arrays (e.g., NVIDIA Tensor cores)

BW

- **Trade-off:** reuse vs utilization
- Handling Sparse GEMMs
 - Structured Sparsity Support
 - E.g., NVIDIA A100
 - Unstructured Sparsity Support
 - Active research going on

NVIDIA A100 supports 4:2 structured sparsity

Workload Trends: Low Op Intensity

Enhancing Memory Bandwidth

Effect of Enhanced Compute Efficiency on Training

Co-Design Exploration for Distributed DL Training Platforms", ISPASS 2020

NPUs (2X4X4)

52

Distributed Training Stack

Different Kinds of Collective Algorithms

- Reduce-Scatter:
 - Used during input-output exchange due to model-parallelism
 - Implementation Algorithms: Ring-Based, Direct-based, etc.
- All-Gather:
 - Used during input-output exchange due to model-parallelism
 - Implementation Algorithms: Ring-Based, Direct-based, etc.
- All-Reduce (Reduce-Scatter + All-Gather):
 - Used during input-output exchange due to model-parallelism, or during model-parameter update.
 - Implementation Algorithms: Ring-Based, Direct-based, Tree-based, Halvingdoubling, etc..
- All-To-All:
 - Used during input-output exchange due to model-parallelism (e.g., distributed embedding layer on DLRM DNN.).
 - Implementation Algorithms: Direct-based, Ring-Based, etc..

Node	Node	Node	Node	Node	Node	Node	Node
_0	1	2	3	0		2	3
$X_{0}^{(0)}$	$X_{0}^{(1)}$	$X_{0}^{(2)}$	$X_{0}^{(3)}$	$\sum_{j} X_0^{(j)}$			
$X_{1}^{(0)}$	$X_{1}^{(1)}$	$X_{1}^{(2)}$	$X_1^{(3)}$	•	$\sum_{j} X_1^{(j)}$		
$X_{2}^{(0)}$	$X_{2}^{(1)}$	$X_{2}^{(2)}$	$X_{2}^{(3)}$			$\sum_{j} X_2^{(j)}$	
$X_{2}^{(0)}$	$X^{(1)}_{2}$	$X_{2}^{(2)}$	$X_{2}^{(3) \text{ Re}}$	duce			$\sum_{j} X_3^{(j)}$
Node	Node	Node	Node	^{atter} Node	' Node,	Node _.	' Node
_0	1	2	3	_0_		2	3
0 X0	1	2	3	0 X0	1 X0	2 X0	3 X0
0 X0	_1	2	<u>3</u>	0 X0 X1	1 X0 X1	2 X0 X1	3 X0 X1
0 X0	1 X1	2 X2	<u>3</u>	0 X0 X1 X2	1 X0 X1 X2	2 X0 X1 X2	3 X0 X1 X2
<u>0</u> X0	_1X1	2 X2	3 → X3	0 X0 X1 X2 X3	1 X0 X1 X2 X3	2 X0 X1 X2 X3	3 X0 X1 X2 X3
0 X0	1 X1	2 X2	3 → X3 All-gai	0 X0 X1 X2 X3 ther	1 X0 X1 X2 X3	2 X0 X1 X2 X3	3 X0 X1 X2 X3

Noue	noae	Noae	Noae	Node	Node	Node	Node
_0	1	2	3	_0_	_1	2	3
$X_{0}^{(0)}$	$X_{0}^{(1)}$	$X_{0}^{(2)}$	$X_{0}^{(3)}$	$\sum_{j} X_{0}^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$	$\sum_{j} X_0^{(j)}$
$X_{i}^{(0)}$	$X_{1}^{(1)}$	$X_{1}^{(2)}$	$X_{1}^{(3)}$ -	$\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_{1}^{(j)}$	$\sum_{j} X_1^{(j)}$
$X_{1}^{(0)}$	$X_{2}^{(1)}$	$X^{(2)}$	$X^{(3)}$	$\sum_{j} X_2^{(j)}$	$\sum_{i} X_2^{(i)}$	$\sum_{j} X_2^{(j)}$	$\sum_{i} X_2^{(i)}$
$V^{(0)}$	$X_{2}^{(1)}$	$\frac{T_{2}}{V^{(2)}}$	$X^{(3)}$	$\sum_{i} X_3^{(j)}$	$\sum_{i} X_3^{(j)}$	$\sum_{i} X_3^{(j)}$	$\sum_{j} X_3^{(j)}$
Λ_3	3	Λ_3	^A ³ All-re	duce			
Node	Node	Node	Node	Node	Node	Node	Node
Node 0	Node 1	Node	Node 3	Node 0	Node 1	Node	Node 3
Node $ 0 $ $ X_0^{(0)} $	Node 1 $X_0^{(1)}$	Node 2 X ₀ ⁽²⁾	Node 3 $X_0^{(3)}$	Node $ 0 $ $ X_0^{(0)} $	Node 1 $X_1^{(0)}$	Node 2 X ₂ ⁽⁰⁾	Node 3 X ₃ ⁽⁰⁾
Node 0 $X_0^{(0)}$ $X_1^{(0)}$	Node 1 $X_0^{(1)}$ $X_1^{(1)}$	Node 2 $X_0^{(2)}$ $X_1^{(2)}$	Node 3 $X_0^{(3)}$ $X_1^{(3)}$	Node 0 $X_0^{(0)}$ $X_0^{(1)}$	Node 1 $X_1^{(0)}$ $X_1^{(1)}$	Node 2 X ₂ ⁽⁰⁾ X ₂ ⁽¹⁾	Node 3 X ₃ ⁽⁰⁾ X ₃ ⁽¹⁾
Node 0 $X_0^{(0)}$ $X_1^{(0)}$ $X_2^{(0)}$	Node 1 $X_0^{(1)}$ $X_1^{(1)}$ $X_2^{(1)}$	Node $X_0^{(2)}$ $X_1^{(2)}$ $X_2^{(2)}$	Node 3 $X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$	Node 0 $X_0^{(0)}$ $X_0^{(1)}$ $X_0^{(2)}$	Node 1 $X_1^{(0)}$ $X_1^{(1)}$ $X_1^{(2)}$	Node $X_2^{(0)}$ $X_2^{(1)}$ $X_2^{(2)}$	Node 3 $X_3^{(0)}$ $X_3^{(1)}$ $X_3^{(2)}$
Node 0 $X_0^{(0)}$ $X_1^{(0)}$ $X_2^{(0)}$ $X_2^{(0)}$ $X_3^{(0)}$	Node 1 $X_0^{(1)}$ $X_1^{(1)}$ $X_2^{(1)}$ $X_3^{(1)}$	Node 2 $X_0^{(2)}$ $X_1^{(2)}$ $X_2^{(2)}$ $X_3^{(2)}$	Node 3 $X_0^{(3)}$ $X_1^{(3)}$ $X_2^{(3)}$ $X_3^{(3)}$	Node 0 $X_0^{(0)}$ $X_0^{(1)}$ $X_0^{(2)}$ $X_0^{(3)}$	Node 1 $X_1^{(0)}$ $X_1^{(1)}$ $X_1^{(2)}$ $X_1^{(3)}$	Node $X_2^{(0)}$ $X_2^{(1)}$ $X_2^{(2)}$ $X_2^{(2)}$ $X_2^{(3)}$	Node 3 $X_3^{(0)}$ $X_3^{(1)}$ $X_3^{(2)}$ $X_3^{(3)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

 $X_{0}^{(2)}$

 $X_{0}^{(0)}$

3

0

 $\sum_{i} X_0^{(j)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

 $X_{0}^{(0)}$

 $X_0^{(2)}$

3

0

 $\sum_{i} X_0^{(j)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

 $X_{0}^{(2)}$

 $X_{0}^{(0)}$

3

0

 $\sum_{i} X_0^{(j)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

 $X_{0}^{(2)}$

 $X_{0}^{(0)}$

3

0

 $\sum_{i} X_0^{(j)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

 $X_{0}^{(0)}$

 $X_{0}^{(2)}$

3

0

 $\sum_{i} X_0^{(j)}$

- A ring with N nodes partitions data to N messages
- Collective Communication Flow:

Node Node Node Node

 $X_{0}^{(0)}$

 $X_0^{(2)}$

3

0

 $\sum_{i} X_0^{(j)}$

Example: Direct All-Reduce

Example: Direct All-Reduce

Example: All-to-All

Topology-aware Collectives

Collectives on Sophisticated Training Platforms

65

Distributed Training Stack

Baseline All-Reduce on the Hierarchical Topologies

3D Torus – Hierarchical Topology

Data chunks	All-reduce pipeline on the hierarchical topologies:	Suppose the initially 12N Chunk size in t	e chunk size per NPU is AB the initial of the phase:
6 1.	Reduce-scatter on the local dime	nsion	12MB
5 2.	Reduce-scatter on the horizontal	dimension	6MB
<mark>4</mark> 3.	Reduce-scatter on the vertical dir	mension	ЗМВ
<mark>3</mark> 4.	All-gather on the vertical dimens	ion	1MB
2 5.	All-gather on the horizontal dime	ension	ЗМВ
1 6.	All-gather on the local dimension	1	6MB
			End: 12MB

Horizontal Dimension

S. Rashidi et al., " Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models". ISCA 2022.

Baseline All-Reduce on the Hierarchical Topologies

3D Torus – Hierarchical Topology

Pipeline Stage latency:

68

Problem: Uneven pipeline stage latencies that causes network underutilization

S. Rashidi et al., " Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models". ISCA 2022.

Distributed Training Stack

Transport Protocols Flexibility Performance (SW terminated) (HW terminated) **GPUdirect GPUdirect** 1RMA* TCP **RDMA RDMA RDMA Async Network Policy** CPU NIC NIC CPU NIC - congestion policy NIC **Protocol Execution** NIC NIC NIC CPU - packetization -.. GPU CPU *A Singhvi et al.,"1rma: Re-CPU **Control Plane** CPU CPU *envisioning remote memory* GPU GPU access for multi-tenant **Data Plane** Main Main Main Memory datacenters, SIGCOMM 2020 Memory Memory Memory Memory

ASTRA-sim Tutorial @ ASPLOS 2023

Tushar Krishna | Georgia Institute of Technology

Congestion Control

- Enforcement mechanism
 - Window-based vs Rate-based
- What metrics to use?
 - Network telemetry vs RTT

Research Questions:

- Impact on training time
- What is the best policy when having irregular parallelization strategy

1D all-reduce and 2D all-reduce completion time (128 MB)

1D all-reduce 2D all-reduce

T Khan, S Rashidi, S Sridharan, P Shurpali, A Akella and T Krishna , "**Impact of RoCE Congestion Control Policies on Distributed Training of DNNs**" In Proceedings of the 29th International Symposium on High-Performance Interconnects **(Hotl)**, Aug 2022.

Distributed Training Stack

Resource Contention at End-point

Distributed Training Stack

Torus 3D

X * Y* Z dimensionX= cores within a packageY= packages in horizonal dimensionZ= packages in vertical dimension

Impact of 1D/2D/3D Torus

- Adding a dimension decreases the number of steps per collective.
 - For example, going from 1X64X1 to 1X8X8.
- Adding a dimension might increase amount of data each node sends out (depends on the algorithm).
 - For example, going from 1X8X8 to 2X8X4.
- Hence, choosing a topology is a tradeoff between the above effects.

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW Co-Design Exploration for Distributed DL Training Platforms", ISPASS 2020

Impact of Asymmetric Hierarchical Topology

- Having higher intra-package BW improves the performance.
- We can further improve performance by changing the algorithm to leverage this asymmetric BW.

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW Co-Design Exploration for Distributed DL Training Platforms", ISPASS 2020

Distributed Training Stack

Target Systems

Effect of Size of Switch Buffer

Observations:

• Flat vs. Hierarch different Sensitivity to global switch size

S. Rashidi, et al., "Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 casestudy with TCP/IP transport", Hot Interconnects 2020

Distributed Training Stack

Introducing ASTRA-sim

S. Rashidi et al., "ASTRA-SIM: Enabling SW/HW Co-Design Exploration for Distributed DL Training Platforms", ISPASS 2020

S. Rashidi, et al., "Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 casestudy with TCP/IP transport", Hot Interconnects 2020

What Does ASTRA-sim Report?

ASTRA-sim Reports:

- 1. End-to-end training time.
- 2. Total communication time for each communication operation.
- 3. The amount of **exposed communication** for each communication operation.
- 4. Total Exposed communication and total computation.
- 5. More detailed stats such as average message latency per each hierarchical collective phase.

Network Backend Specific Reports (Depends on the network backend type):

- 1. Network BW utilization
- 2. Communication protocol stats, such as packet drops, # of retransmissions, etc.
- 3. Network switch buffer usage
- 4. ...

Summary and Takeaways

- Large Model distributed training is an ongoing open-research area
- Many emerging supercomputing systems being designed specifically for this problem!
 - Cerebras CS2
 - Tesla Dojo
 - NVIDIA DGX + Mellanox SHARP switches
 - Intel Habana
 - IBM Blueconnect
 - ...
- Co-design of algorithm and system offers high opportunities for speedup and efficiency

Time (PDT)	Торіс	Presenter
1:40 - 2:20	Introduction to Distributed DL Training	Tushar Krishna
2:20 - 2:40	Training Systems Challenges: An Industry Perspective from Meta	Srinivas Sridharan
2:40 - 3:20	ASTRA-sim	Saeed Rashidi and Taekyung Heo
3:20 - 3:40	Coffee Break	
3:40 - 4:20	ASTRA-sim (continued)	Saeed Rashidi and William Won
4:20 - 4:50	Demo	William Won
4:50 - 5:00	Closing Remarks and Questions	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) <u>https://astra-sim.github.io/tutorials/asplos-2023</u>

Attention: Tutorial is being recorded