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Large Language Models (LLMs)
3
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Models are Becoming Larger
4

• Deep learning (DL) models are scaling at an unprecedented rate

https://huggingface.co/blog/large-language-models
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Dataset is also Becoming Larger
5

"570 GB of uncompressed text data" "1.56 trillion words"
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Training is a Key Challenge
6

• Trillion-parameter Models
• Zeta-scale floating-point operations 
• 10s of TB of memory

• Impractical to be trained on a single GPU
• 355 GPU-years to train (using NVIDIA V100)
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Distributed Training is Inevitable
7

• Shard model/data across NPUs (Neural Processing Unit)

"around 1,000 TPUs""thousands of GPUs"
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Distributed Training is Inevitable
8

• Shard model/data across NPUs (Neural Processing Unit)

"around 1,000 TPUs""thousands of GPUs"

Distributed training is necessitated
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Parallelization Strategy
10

• Model Parallelism (MP)

• Data Parallelism (DP)

ModelData Output

NPU1 NPU2

ModelData Output

NPU1

NPU2
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Design-space of Distributed Training
11
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Figure Courtesy: Srinivas Sridharan (Meta)
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Design-space of distributed training
is large and complex
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ASTRA-sim

http://github.com/astra-sim/astra-sim
S. Rashidi, et al.,  “Scalable Distributed Training of 

Recommendation Models: An ASTRA-SIM + NS3 case-
study with TCP/IP transport”, Hot Interconnects 2020

S. Rashidi et al.,“ASTRA-SIM: Enabling SW/HW 
Co-Design Exploration for Distributed DL 

Training Platforms”, ISPASS 2020

STRA
SIM

14

ü Supports Data-Parallel, Model-Parallel, 
Hybrid-Parallel training loops

ü Extensible to more training loops

ü Ring based, Tree-based, All-to-All 
based, and multi-phase collectives

ü Variety of scheduling policies
ü Compute times fed via offline system 

measurements or compute simulator

ü Various topologies, flow-control, link 
bandwidth, congestion control

ü Plug-and-play options
ü Garnet (credit-based)

DL Training Co-Design Stack

http://github.com/astra-sim/astra-sim
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ASTRA-sim Capabilities
15
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ASTRA-sim captures/simulates
complex design-space of distributed training
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Emerging Platforms
18

Pipeline Parallelism Multi-dimensional Networks

Novel Memory Systems through CXL
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Limitations of ASTRA-sim
19

• Rigid parallelization strategy
• Pre-defined network topology with limited scale
• Lack of memory system modeling
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Limitations of ASTRA-sim
20

• Rigid parallelization strategy
• Pre-defined network topology with limited scale
• Lack of memory system modeling

ASTRA-sim cannot model
emerging training platforms
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Overview: ASTRA-sim2.0
22

(a) SW/HW co-design
stack of distributed training

(c) Enhanced ASTRA-sim
simulation infrastructure
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ü Supports arbitrary parallelization strategies
ü Graph-based Execution Engine
ü Execution Traces (ETs)

ü Simulates multi-dimensional networks at scale
ü Multi-dimensional topology representation
ü Analytical network backend

ü Captures memory systems through MemoryAPI
ü Local memory model
ü Remote memory model
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Graph-based Execution Engine
23
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Graph-based Execution Engine
24

• Parallelization is represented in Execution Trace (ET)

Memory

Size: 500 MB

Compute
Input: 50 x 10

Weight: 10 x 20

Compute
Input: 50 x 10

Weight: 10 x 20

Communication
All-Reduce

300 MB

Memory

Size: 200 MB

Communication
peer-to-peer

100 MB
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Collecting Execution Trace
25

• ETs could be easily collected from PyTorch models

Start
ET collection

Run model

Stop collection
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Multi-dimensional Network Modeling
26
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Network Building Blocks
27

• Basic building blocks of multi-dimensional networks

Ring FullyConnected Switch

• No network congestion while running collective communication
Topology Building Block Topology-aware Collective Algorithm

Ring Ring

FullyConnected Direct

Switch HalvingDoubling
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Representing Real Systems
28

• Captures state-of-the-art training platforms

Dimension Component
(Networking)

Dim 1 Chiplet
(on-chip)

Dim 2 Package
(NVLink)

Dim 3 Node
(NVLink)

Dim 4 Pod
(NIC)
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Analytical Backend
29

• Boost up simulation by analytically modeling communications

send(src à dest, msg_size) = 

#hops(src à dest) × link_latency link
delay

+
msg_size

link bandwidth

serialization
delay

• Suitable when there's no network contention
• Topology-aware collective communication
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Modeling Emerging Memory Systems
30
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Modeling Emerging Memory Systems
31

• Local Memory Model 
access(tensor_size) = memory access latency +  

tensor_size
memory bandwidth

• Remote Memory Model
• Mix and match per design choices (e.g., pipelining multiple stages)

• In-switch Collective Communication
• Reduction happens on-the-fly inside network switches

• ASTRA-sim2.0 adds a MemoryAPI
• Could be used for both local/remote memory models
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Modeling Emerging Memory Systems
32

• Local Memory Model 
access(tensor_size) = memory access latency +  

tensor_size
memory bandwidth

• Remote Memory Model
• Mix and match per design choices (e.g., pipelining multiple stages)

• In-switch Collective Communication
• Reduction happens on-the-fly inside network switches

• ASTRA-sim2.0 adds a MemoryAPI
• Could be used for both local/remote memory models

ASTRA-sim2.0 models
futuristic training characteristics
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Case Study 1: Conventional vs. Wafer-scale
34

• Conventional Systems: multi-dimensional with diminishing BW
• Wafer-scale Systems: 1-2D topology with very-high-BW

Tesla D1 Cerebras WSE-2NVIDIA HGX-H100

• https://developer.nvidia.com/blog/introducing-nvidia-hgx-h100-an-accelerated-server-platform-for-ai-and-high-performance-computing
• https://www.lrz.de/presse/ereignisse/2022-05-25-NextGenAISystem/
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Case Study 1: Conventional vs. Wafer-scale
35

• Wafer-scale: 1-2D
• With very high BW per each Dim

• Conventional Systems: 3-4D
• With diminishing network BW with higher network dimension
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Case Study 1: Result
36

• Overhead running multi-dimensional collective communication
• W-1D (with higher BW) yields overall best performance

• Conv-4D is still powerful
• Driving higher BW per NPU
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Case Study 2: Chunk Scheduling Policy
37

• Themis: Greedy-based chunk scheduling policy
• To maximize BW utilization of multi-dimensional collective communication

Saeed Rashidi et al., "Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models," ISCA 2022

Baseline Scheduling

Themis Scheduling
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Case Study 2: Result
38

• No difference in W-1D, but huge gain in W-2D, Conv-3/4D
• If equal BW/NPU is provisioned, yields near identical performance
• Regardless of network dimensionality
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Case Study 3: Comparing Memory Systems
39

• ZeRO-Infinity: leveraging local memory (NVMe)
• HierMem: disaggregated memory systems with in-switch collective
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Case Study 3: Comparing Memory Systems
40

• ZeRO-Infinity: Baseline
• HierMem:
• Baseline: equivalent configuration as ZeRO-Infinity
• Opt: fine-tuned configuration for Mixture-of-Experts (MoE) Model
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Case Study 3: Result
41

• ZeRO-Infinity and HierMem (baseline) is near-identical
• Fine-tuned HierMem shows 4.6x better runtime
• In-switch collective communication reduces exposed communication
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Case Study 3: Result
42

• ZeRO-Infinity and HierMem (baseline) is near-identical
• Fine-tuned HierMem shows 4.6x better runtime
• In-switch collective communication reduces exposed communication

ASTRA-sim2.0 enables design-space 
exploration of emerging training platforms
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Conclusion
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• Needs to navigate the design-space of distributed training
• Large models and huge training dataset makes distributed training inevitable
• Design space is complex: parallelism, memories, networks, etc.

• ASTRA-sim2.0: modeling emerging systems
• Arbitrary parallelization strategies
• Multi-dimensional networks at scale
• Disaggregated memory system modeling

https://astra-sim.github.io ASTRA-sim2.0 paper

Reach out to me at:
william.won@gatech.edu

Thank You!


