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Large Language Models (LLMs)

©

. b ' @erebras

SSSSSSSSSS William Won | School of CS | Georgia Institute of Technology

zzzzzzzzzz



Models are Becoming Larger

* Deep learning (DL) models are scaling at an unprecedented rate
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https://huggingface.co/blog/large-language-models
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Dataset is also Becoming Larger

How large was your training dataset?

As a language model, | am a pre-trained model that has been trained on a large corpus of U LY

text data to learn patterns and relationships between words, phrases, and sentences. The
specific dataset used to train me depends on the version of the GPT architecture that | am

built on top of.

For example, the largest version of the GPT architecture, GPT-3, was trained on a diverse and
massive dataset of web pages, books, and other sources of text data, totaling over 570 GB of
uncompressed text data. This dataset included a wide range of sources, including books,
websites, and even programming code, to help provide a broad and comprehensive

understanding of the English language.

"570 GB of uncompressed text data" 1 56 trillion words"

J 7 How large was your training dataset? V4

View other drafts v

*‘ My training dataset was 1.56 trillion words of text and code. This dataset was collected from a
variety of sources, including books, articles, code, and human conversations. The dataset was
carefully curated to ensure that it was high-quality and representative of the real world.
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Training is a Key Challenge

* Trillion-parameter Models
e Zeta-scale floating-point operations
* 10s of TB of memory

* Impractical to be trained on a single GPU
e 355 GPU-years to train (using NVIDIA V100)
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Distributed Training is Inevitable

» Shard model/data across NPUs (Neural Processing Unit)

. o .
BA How many GPUs were needed to train you* ‘}J How many TPUs were needed to train you?

%

As a language model, | was pre-trained on a large corpus of text data using various versions O P View other drafts v/

of the GPT architecture, which were trained on different computing infrastructures

depending on the specific version of the model and the resources available at the time of *‘ It is not publicly known how many TPUs were needed
training. to train me. However, it is estimated that it took

For example, the largest version of the GPT architecture, GPT-3, was trained on a

supercomputer cluster consisting of thousands of GPUs and hundreds of CPUs provided by

Microsoft Azure. This massive infrastructure enabled efficient and scalable training of the

GPT-3 model, which has 175 billion parameters. Ianguage models.

"thousands of GPUs" "around 1,000 TPUs"
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around 1,000 TPUs to train me for 1.5 years. Thisis a
significant amount of computing power, and it is one
of the reasons why it is so expensive to train large
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Distributed Training is Inevitable

» Shard model/data across NPUs (Neural Processing Unit)

Distributed training is necessitated

supercomputer cluster consisting of thousands of GPUs and hundreds of CPUs provided by L. . ’ .
of the reasons why it is so expensive to train large

Microsoft Azure. This massive infrastructure enabled efficient and scalable training of the
language models.

GPT-3 model, which has 175 billion parameters.

"thousands of GPUs" "around 1,000 TPUs"
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Parallelization Strategy

* Model Parallelism (MP)

Data

X

NPU1 | | NPU2

e Data Parallelism (DP)
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Design-space of Distributed Training

|

Data, Model, Platform Agnostic Hybrid,
Workload Platform-aware Hybrid, Pipelined Parallelism
Layer _ Distributed worker, Parameter Server
I _—> Topology-aware Collectives, Send/Recv, RPC
System > Dataflow, Microarchitecture, Flexibility, Sparsity Support
—> LIFO, FIFO, Fusion

Layer
Messaging/Transport Layer |[—> TCP, RDMA (+ GPUDirect RDMA)

4

Endpoint Node Design and Connectivity |—> # links, BW per link, arghltecture (chip/package/board),
NIC offload, compression

Network . . Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Layer Felaile [eslgh gnel Vepalegy Fully-Connected, Hyper-Cube Mesh

ﬂ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (Meta)
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Design-space of Distributed Training

Data, Model, Platform Agnostic Hybrid,
Platform-aware Hybrid, Pipelined Parallelism

Design-space of distributed training

Is large and complex

# links, BW per link, architecture (chip/package/board),
NIC offload, compression

Network . : Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Layer Faloli@ Drsiig el Lejzelegy Fully-Connected, Hyper-Cube Mesh

ﬁ Endpoint Node Design and Connectivity +——>

@ Network Implementation —> Buffering, Flow-control, Arbitration, Congestion Mgmt

Figure Courtesy: Srinivas Sridharan (Meta)
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ASTRA-sim

Supports Data-Parallel, Model-Parallel,
Hybrid-Parallel training loops
Extensible to more training loops

Ring based, Tree-based, All-to-All
based, and multi-phase collectives
Variety of scheduling policies
Compute times fed via offline system
measurements or compute simulator

AN

v’ Various topologies, flow-control, link
bandwidth, congestion control
v Plug-and-play options
v' Garnet (credit-based)

Workload
Parameters

System
Parameters

Network
Parameters

http://github.com/astra-sim/astra-sim

7

Workload‘

Training Loop

N\

Network
API

.

Network
(Garnet or NS3)

G

Topology
)

N DL Training Co-Design Stack
H DNN Models
> Workload Workload Parallelization Strategy
S Layer
E > Communication Policy and Pattern
7
E Framework-level Scheduling
S;gm Communication Mechanism Com?ute
Layer Design
O Communication Scheduling
-) ﬂ Messaging/Transport Layer -
> Network Endpoint Design and Connectivity
@ Layer
g Hierarchical Fabric Design and Topology
% ﬂ '
9 — Network Implementation
E S. Rashidi et al.,"ASTRA-SIM: Enabling SW/HW
2 Co-Design Exploration for Distributed DL
g < Training Platforms”, ISPASS 2020

S.

Rashidi, et al., “Scalable Distributed Training of

Recommendation Models: An ASTRA-SIM + NS3 case-
study with TCP/IP transport’, Hot Interconnects 2020
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http://github.com/astra-sim/astra-sim

ASTRA-sim Capabilities
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ASTRA-sim Capabilities

ASTRA-sim captures/simulates

complex design-space of distributed training
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Emerging Platforms
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Pipeline Parallelism

Local Memory Pooled Memory Memory Switches/Systems

Novel Memory Systems through CXL
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Limitations of ASTRA-sim

* Rigid parallelization strategy
* Pre-defined network topology with limited scale

* Lack of memory system modeling
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Limitations of ASTRA-sim

* Rigid parallelization strategy
* Pre-defined network topology with limited scale

ASTRA-sim cannot model

emerging training platforms
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Overview: ASTRA-sim2.0

DNN Models

ﬁ |

Workload

Workload Parallelization Strategy

Layer

ﬂ |

Communication Policy and Pattern |

Framework-level Scheduling

System

Layer

Demgn

Messaging/Transport Layer | -

ﬂ |

Network

Endpoint Design and Connectivity

Layer

Hierarchical Fabric Design and Topology |

0]

Network Implementation |

(a) SW/HW co-design
stack of distributed training

( ML Frameworks

)

yParser

7
( Comm. ) (Memory) ( Comm. )

v" Simulates multi-dimensional networks at scale
v" Multi-dimensional topology representation

v Analytical network backend

Workloav;

( Training Loop )

Execution Trace

Remote Mem Load/Store (Load Size)

Compute (#FP Ops, Mem Size)

Collective Comm. (Type, Size)

(b) Graph-based
Execution Engine

v’ Supports arbitrary parallelization strategies

v' Graph-based Execution Engine
v Execution Traces (ETs)

J

Collectlves >

System

Event
Queue

System
Parameters

Dlspatch er Scheduler
Scheduling
Ready Queue Queue

(c) Enhanced ASTRA-sim

simulation infrastructure
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Network
API

Multi-dimensional
NPU Fabric

A

NPU

Remote

Memory
Disaggregated memory pool
arget distributed training infrastructure

Memory

X
Mem.

Disaggregated Memory

Fabric

/

Remote
Memory

v Captures memory systems through MemoryAPI
v’ Local memory model

v" Remote memory model
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Graph-based Execution Engine

( ML Frameworks )

‘Parser

H I DNN Models

Workload Parallelization Strategy
Workload

Layer

\
Workload

( Training Loop )
Y

\ l v NPU NPU NPU

Communication Policy and Pattern |

ﬂ l Framework-level Scheduling

> Compe) z
I.;nvr Dtﬂgn ystem
O Communication Scheduling | - Event
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Messaging/Transport Layer Design ueue
System

Execution Trace

Remote Mem Load/Store (Load Size)

Endpoint Design and Connectivity | Parameters

Scheduler | |V

Network

\
b o Remote Remote Remote
Memory Memory Memory
(c) Enhanced ASTRA-sim Disaggregated memory pool
simulation infrastructure (d) Target distributed training infrastructure

Compute (#FP Ops, Mem Size)

I Hierarchical Fabric Design and Topology I

Network Implementation I

Collective Comm. (Type, Size)

(a) SW/HW co-design
stack of distributed trainfhg

(b) Graph-based
Execution Engine

ISPASS 2023 William Won | School of CS | Georgia Institute of Technology Apr 25,2023



Graph-based Execution Engine

 Parallelization is represented in Execution Trace (ET)

ISPASS 2023

Memory

Size: 500 MB

Compute Compute
Input: 50 x 10 Input: 50 x 10
Weight: 10 x 20 Weight: 10 x 20

Communication Memory Communication
peer-to-peer All-Reduce
100 MB Size: 200 MB 300 MB
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. .
Collecting Execution Trace

* ETs could be easily collected from PyTorch models

et = ExecutionGraphObserver ()

et .register_callback ("et_file.json") | >tart .
et.start () ET collection
# run PyTorch model L rRun model

et .stop ) Stop collection
et .unreglster_callback ()
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Multi-dimensional Network Modeling

l DNN Models
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(a) SW/HW co-design
stack of distributed training
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‘ Compute 'Compute (#FP Ops, Mem Size)
Collective Comm. (Type, Size)

(b) Graph-based
Execution Engine

System
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System
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Queue
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Scheduler
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(c) Enhanced ASTRA-sim
simulation infrastructure
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Network Building Blocks

* Basic building blocks of multi-dimensional networks

Ring FullyConnected

Switch

* No network congestion while running collective communication

ISPASS 2023

Topology Building Block

Ring

Topology-aware Collective Algorithm

Ring

FullyConnected

Direct

Switch

HalvingDoubling
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Representing Real Systems

e Captures state-of-the-art training platforms

Component
(Networking)

ISPASS 2023

Dim1

Dim 2

Dim 3

Dim 4

Chiplet SW(3) SW(2)

(on-chip) NVIDIA DGX-2
Package NVIDIA DGX-A100
(NVLink)

Node
(NVLink)

Pod ,

NIC :

NE R(4)_ SW(2)

Meta Zion

NVIDIA DGX-1
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R(4) R(2)_ R(2)
Google TPUv4

FC(4) SW(2)
Intel
Habana
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Analytical Backend

* Boost up simulation by analytically modeling communications

. link
#hops(src =2 dest) x link _latenc
ps( ) _ y :|- delay
send(src = dest, msg_size) = "
msg_size :l_ serialization
link bandwidth delay

e Suitable when there's no network contention
* Topology-aware collective communication
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Modeling Emerging Memory Systems

l DNN Models

—=

Workload Parallelization Strategy

( ML Frameworks ) . )

| Multi-dimensional

| ; Parser f Workload NPU Fabric
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= System
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\ Dispatcher Scheduler
_ Scheduling
[ Network Implementation | ‘ Compute )Compute (#FP Ops, Mem Size) Ready Queue Queue

\ J
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(a) SW/HW co-design (b) Graph-based (c) Enhanced ASTRA-sim

stack of distributed training Execution Engine simulation infrastructure (d) Target distributed training infrastructure
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. .
Modeling Emerging Memory Systems

* ASTRA-sim2.0 adds a MemoryAPI

* Could be used for both local/remote memory models

* Local Memory Model tensor Size
access(tensor_size) = memory access latency + —

memory bandwidth

* Remote Memory Model
* Mix and match per design choices (e.g., pipelining multiple stages)

* In-switch Collective Communication
* Reduction happens on-the-fly inside network switches
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Modeling Emerging Memory Systems

* ASTRA-sim2.0 adds a MemoryAPI

* Could be used for both local/remote memory models

ASTRA-sim2.0 models

futuristic training characteristics

* In-switch Collective Communication
* Reduction happens on-the-fly inside network switches
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Case Study 1: Conventional vs. Wafer-scale

* Conventional Systems: multi-dimensional with diminishing BW
* Wafer-scale Systems: 1-2D topology with very-high-BW

NVLink
Switch

/ External

NVLink

Optical
cables

NVSwitch

NVLink

weunna| .32 servers (256 GPUs) ... 2| oo

NVIDIA HGX-H100 Tesla D1 Cerebras WSE-2

* https://developer.nvidia.com/blog/introducing-nvidia-hgx-h100-an-accelerated-server-platform-for-ai-and-high-performance-computing
 https://www.Irz.de/presse/ereignisse/2022-05-25-NextGenAlSystem/
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Case Study 1: Conventional vs. Wafer-scale
* Wafer-scale: 1-2D

* With very high BW per each Dim

* Conventional Systems: 3-4D

ISPASS 2023

* With diminishing network BW with higher network dimension

Topology Shape NPU Size BW (GB/s)
W-1D Switch 512 350, 500, 600
W-2D Switch_Switch 32%x16 250 250

Conv-3D Ring_FC_Switch 16 x8x4 200_100_50

Conv-4D | Ring_FC_Ring_Switch | 2x8x8x4 | 250_200_100_50

William Won | School of CS | Georgia Institute of Technology
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Case Study 1: Result

* Overhead running multi-dimensional collective communication
 W-1D (with higher BW) yields overall best performance

* Conv-4D is still powerful
* Driving higher BW per NPU

Baseline Collective Scheduler

g0 | = Compute
.g
i = Exposed
g 1 Comm.
)
No.
@ cooconnloooconnloooconn
: B335 TIEe2038R88%¢
S | OO0OO0QEcNOOQESD0OQEE
TN QoM T NOONT T TG OO
==2339092=2z2z309092x2z00
All-Reduce DLRM GPT-3 T-1T
(1GB)
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Case Study 2: Chunk Scheduling Policy

* Themis: Greedy-based chunk scheduling policy

* To maximize BW utilization of multi-dimensional collective communication

64MB 64MB 64MB 64MB 16MB 16MB 16MB 16MB |
Din1 RS RS RS RS AG AG AG AG |}
(1X BW): £1.1 Lol c3.1 ca.1 c1.4 c2.4 c3.4 ca.4
.- > '
1 0
) 16MB 4MB 16MB 4MB 16MB 4MB 16MB 4MB H
Dim2 idle RS |[AG |[ RS |[AG |[RS |[AG |[Rs |[AG idle 1
—p]
(0.5X BW): c1.2||c13|[c22||c23||ca2||caa||can||cas]| * ™
[} Ti
1gTime
.8 >
Baseline Scheduling
utilization. g 0 .
64MB 64MB © 3 64MB 16MB 16MB 16MB__ .o ) Cm.n:Chunk#m,
. RS RS RS AG AG AG stage # n
Dim1 c1.1 c3.1 c4.1 ci4 c3.4 cas  |™
(1X BW): "
1 RS: Reduce-
| Scatter operation
64MB 16MB 4MB 16MB 4MB 16MB 4MB 16MB H
Dim2 RS RS |[AG |[RS |[AG |[Rs |[AG AG I AG: All-Gather
(0.5X BW): c2.1 c1.2||c1.3][c3.2||ca.3]|ca2]||cas c24 | operation
' .
17 Time
L >

Themis Scheduling

Saeed Rashidi et al., "Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models," ISCA 2022
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Case Study 2: Result

* No difference in W-1D, but huge gain in W-2D, Conv-3/4D

* |f equal BW/NPU is provisioned, yields near identical performance
* Regardless of network dimensionality

Greedy Collective Scheduler (Themis)

= Compute
= Exposed
Comm.
o000 o0 O0OAN
0noOooO HNOOOMm
@O O RO 4
‘afalala Lbooaoce
T n Y Thnee
==== ====°
All-Reduce DLRM T-
(1GB)
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Case Study 3: Comparing Memory Systems

e ZeRO-Infinity: leveraging local memory (NVMe)
* HierMem: disaggregated memory systems with in-switch collective

InfiniBand Network ; ;
4 $ 4 $ $ 4 oo
4 $ 4 $ $ 4

In-node Network

NvMe]NVMe INVMe] Nviie IR NVMe [ NVMe

-
ZeRO-Infinity

HierMem
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Case Study 3: Comparing Memory Systems

e ZeRO-Infinity: Baseline

° H

ISPASS 2023

ierMem:

e Baseline: equivalent configuration as ZeRO-Infinity
e Opt: fine-tuned configuration for Mixture-of-Experts (MoE) Model

. HierMem | HierMem
ZeRO-Infinity (Baseline) (Opt)

GPU Peak Perf (TFLOPS) 2048 2048 2048
GPU Local HBM BW (GB/sec) 4096 4096 4096
In-node Pooled Fabric BW (GB/sec) - 256 512
Num of Out-node Switches - 16 16
Num of Remote Memory Groups 256 256 256
Remote Mem Group BW (GB/sec) 100 100 500

William Won | School of CS | Georgia Institute of Technology
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Case Study 3: Result

e ZeRO-Infinity and HierMem (baseline) is near-identical

* Fine-tuned HierMem shows 4.6x better runtime
* In-switch collective communication reduces exposed communication

Compute Time
Exp. Comm

Exp. Idle

Exp. Local Mem
Exp. Remote Mem

ity
\*\'\eYN\em \’“

Execution Cycles

COOCOHKEFHNMDNN
cCwobNUoHR

\nf

N
o,
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Case Study 3: Result

e ZeRO-Infinity and HierMem (baseline) is near-identical
* Fine-tuned HierMem shows 4.6x better runtime

ASTRA-sim2.0 enables design-space

exploration of emerging training platforms

Exp. Remote Mem

ey \\
o-\nf (pas® pierMe

7eR nie V) e
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Conclusion

* Needs to navigate the design-space of distributed training
* Large models and huge training dataset makes distributed training inevitable
* Design space is complex: parallelism, memories, networks, etc.

* ASTRA-sim2.0: modeling emerging systems
* Arbitrary parallelization strategies
* Multi-dimensional networks at scale
e Disaggregated memory system modeling

Thank You!

Reach out to me at: -
william.won@gatech.edu

https://astra-sim.github.io ASTRA-sim2.0 paper




